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ABSTRACT 
 

The goal of Model Order Reduction (MOR) is to catch a model of order 
lower than that of the real model satisfactory for the purpose of the analysis. 
The reduced order model should be characterized by a low computational effort 
but also to be able to estimate the input-output map of the original system in an 
important region of the input space. Actually, since only a subset of the input 
space is of interest, this matching should occur in this subset of the input space. 

This contribution emphasizes some consequences of  the adoption of a 
reduced order model when structural monitoring applications are pursued. 

 
INTRODUCTION 

 
A Model Order Reduction (MOR) technique [1] was strictly required, in 

order to be able to achieve a solution of large-size dynamic structural problems, 
until one decade ago, due to the computation hardware capability available at that 
time. Nowadays, the MOR strategy, which offers a low computational effort 
coupled with the ability to estimate, in an important region of the input space, the 
input-output mapping of the original system, remains a viable methodology 
toward the implementation of real time control systems and/or the solution of 
problems where several repeated analyses must be carried out (e.g., optimization 
and/or reliability problems) . 

Within the MOR techniques, the current research efforts [2] are mainly 
addressed to capture lower order models for nonlinear systems. Nevertheless, also 
the correct application of MOR when dealing with linear systems still requires 
attention. In this paper, a linear, time invariant structural problem is studied. 
The manner in which the reduction cascade can affect the accuracy of the final 
reduced model was discussed in two previous studies. In [3] one can see how 
two different cascades of model order reduction are applied to a benchmark 
building and appreciate the different accuracy in two different 20 states reduced 
order models. In [4], as well as in this paper, a smaller size frame is investigated. 
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CASE STUDY 
 

 
To verify the feasibility of structural control schemes in Civil and 

Infrastructural Engineering suggested the introduction of benchmark studies. The 
building analyzed in one of them was first introduced in [5]: the original 20 story 
building is modified in this paper to take into account the 3 upper stories only. The 
resulting building is the 3 stories steel frame shown in Figure 1, with an inter-storey 
height of 3.96 m, for a total height of 11,88 m above the ground level, and 5 bays of 
6.10 m each along the N-S direction. The steel yielding stress is 345 MPa. The 
masses to be considered are 5.32x105 kg for all the levels. 

 
 

 
 

 
Figure 1: The case study investigated within this paper, re-elaborated from [4] and [5].  

 
 

For the purposes of this paper, the frame was subjected to a single ground 
acceleration time history,  i.e., the N-S component of the acceleration recorded 
during the El Centro seismic event of May 18, 1940. The peak acceleration is 3.417 
m/sec2. The carried-out dynamic analyses introduce a time discretization  step of 
0.02 sec. 

 
NUMERICAL MODELS 
 

A two-dimensional analysis of the structural system is pursued. Thus beams 
and columns are modeled as 2D beam finite elements, each connecting two nodes. 
For each element of given length, section area, inertia moment, Young modulus 
and density, the mass (assumed to be lumped) and the stiffness matrices are 
obtained [6, 7]. The rotational mass is ignored. The global mass and stiffness 
matrices are then obtained by assemblage, and the damping matrix follows the 
Rayleigh scheme [8]. 

Every node shows three degrees of freedom: horizontal, vertical and 
rotational. The frame is discretized by 72 nodes (4 levels of 6 nodes each) so that 
72 degrees of freedom are computed before the application of the boundary 
conditions. 

The dynamic analysis is driven by the equations: 
 

                                                   (1) 
 

    (2) 
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where     are the mass, damping and stiffness matrices, 
respectively;  is the matrix of the input quantities;  

 are the matrices of the observed variables, to be applied to  and , 

respectively. In the case under investigation  is diagonal (and therefore 
invertible). 

Let . By introducing the following matrices,  
 

, ,      (3) 

one obtains: 

                (4)   

                                                         (5) 

The boundary conditions deleted 18 (6 by 3) degrees of freedom, so that the square 
matrices in (1-2) are of size 54, while those in (4-5) are of size 108. 
 
 
STANDARD REDUCTION STEPS 

 
The model (say A) described by either Eqs.(1-2) or (4-5) and square 

matrices of size 54 and 108, respectively, is regarded as the full model for the 
problem under investigation. A standard Ritz reduction technique is then used to 
consider the horizontal translation of all the nodes of a same level as slave of the 
one of the master node defined for that specific level. By applying this method to 3 
levels of the frame, so that six translational degrees of freedoms condense into one, 
a reduction of 15 degrees of freedom is achieved. For this reduced model (say B), 
the sizes of the square matrices in Eqs. (1-2) and (4-5) are 39 and 78, respectively. 

In the absence of rotational inertias, a static condensation of the rotational 
degrees of freedom is easily achieved at a stiffness level. Since the rotational 
degrees of freedom are 18, a new reduced order model (say C) is achieved with 21 
degrees of freedom or equivalently 42 states. 

 
 
REDUCTION BY BALANCED TRANSFORMATION 
 

From the model of Eqs. (4-5), the Gramian matrices of controllability and 
observability,  and , satisfy the following pair of Lyapunov equations: 

 
                                     (6) 
                                      (7) 
 

respectively. The steps to perform a reduction by balanced transformation are 
described as follows. 
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1) Find the  Gramian matrices  and  as solutions of the Lyapunov 
equations ; 

 
2) Perform the Cholesky factorizations of the Gramian matrices: 

 
  ;       (8)   

 
3) Consider the Singular Values Decomposition (SVD) of the Cholesky factors: 

 
    (9) 

 
where, denoted the r.h.s. by Q, U is the matrix of the eigenvectors of QQT, V is 
the matrix of the eigenvectors of QTQ and Λ Λ Λ Λ is the diagonal matrix of the 
singular values. 

 
 

4) Define the balanced transformation: 
 

 ,    (10) 
 

5) Build the state space matrix representation by introducing the matrices: 
 
 

                 (11) 
 

  (12) 
 

         (13) 
 

The Hankel singular values are then introduced to operate a model 
reduction. The starting model is characterized by 42 states, then 3 reduced order 
models made of 6, 4 and 2 states are achieved. 

 
 
OBSERVED VARIABLES 
 

Moving from the state variables to the observed variables, the following 
relation holds 
 

     (14) 
 

where attention can be focused on accelerations and velocities at given locations 

    (15) 

To maintain a symmetric  formulation, one  divides  into two vectors  and  
such that  
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    (16) 

 
After the kinematic reductions, the number of state variables, initially in the number 
of 108, reduced to 78 first and 42 at the end of the last stage The reduction of 
corresponding  matrix is trivial 

The further reductions by balanced transformation see the  matrix reduced 
according to Eq.(13). For each of the three studied reduced models (model of 6, 4 and 
2 state variables respectively), the following algebra applies: 

 
      (17) 

 
   (18) 

 

 
 
From the last equation, after re-arranging , one obtains: 

 
 

 
and eventually 

 

 

 
SENSOR LOCALIZATION 
 

It is assumed that the 78 state variable model produces, at any floor, the  
accelerations which can be measured by suitable accelerometers. 
  

Using this information Eq.s (19) provides an estimate of the state variables for 
the reduced models characterized by 6,4 and 2 state variables respectively. The 
estimate differs from the actual model (see Figure 2, as an example). 
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Figure 2 –  4 state variables models associated with combination of acceleration 2 and 3: full time 
histories (top) and zoom (bottom) 

 
The deviation of these estimates form the state variables as computed by the 

models themselves can be evaluated by the corresponding sum-of-squares or by its 
square-root: 
 

 

 
where the “*” denotes that each quantity is made dimensionless by dividing its value 
by the maximum value in the actual time history.  
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Table 1 – Values of the quantities δ i  for different scenarios of sensor localization. 
 

Standard 
deviation 6 by 6 model 4 by 4 model 2 by 2 model 

 1,2,3 1,2 1,3 2,3 1 2 3 
0.0018 0.0276  0.0062 0.0673   
0.0018 0.0276  0.0062 0.0673   

 0.0018 0.0276 0.0015   0.0203  
 0.0018 0.0276 0.0015   0.0203  
 0.0018  0.0015 0.0062   0.0173 
 0.0018  0.0015 0.0062   0.0173 

 
 

Table 1 summarizes the results achieved for the following scenarios 
- 6 state-variables model associated with the presence of 3 sensors, one at each 

floor; 
- 4 state-variables model associated with all the combinations of sensors at 2 

different floors; 
- 2 state-variables model associated with the different location of a single 

sensor. 
 

If the best location of the sensor is assumed to be the location which 
minimizes the sum-of-squares, one achieves the sensor locations emphasized in bold 
in Table 1. 

 
 
CONCLUSIONS 
 

Using Model Order Reduction theory [1], this paper shows, with reference to a 
single case study, how one can benefit of the theory to solve the problem of sensor 
placement in a system monitoring architecture. 

In particular, the use of a reduced number of sensors is associated with a 
reduced model and the optimal location of the sensors is pursued as the one  which 
minimizes the deviations, from the model state variables time histories, of their 
estimates. 
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