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ABSTRACT 
 

In this contribution a feature-based resampling approach for industrial processes 
with periodic data is proposed. This approach is used for fault classification and 
diagnostic purposes and based on the Discrete Wavelet Transform (DWT). The 
approach is used to define a set of reliable features which is used as signal dividers 
specifying the segments to be resampled. A real industrial example of process cycles 
with a periodic nature of signals is presented to demonstrate the efficiency of the 
approach compared to other usual approaches. 

 
 
 

INTRODUCTION 
 

The cyclic nature of operation can be found in many production machines and 
systems. Such kind of operation is usually related to the periodic nature of data 
documented by corresponding data acquisition systems. For reliable diagnosis and 
prognosis systems, the operation cycles are considered as units. Here the time series 
data within one cycle operation are considered as features or source of features for 
classification. In many cases the length of the cycles is variable, which imposes 
difficulties in constructing the input matrix of the classifier algorithms such as Support 
Vector Machine (SVM) [1]. Related SVM-approaches require constant dimensions of 
the input feature matrix. This problem is solved usually by zero padding, entropy, and 
energy  measures,  which  lead  to  either  deterioration  of  the  generalization  and 
robustness of the solution or a loss of system information. 

In order to normalize the length of operation cycles, a process of resampling 
should be applied. The process cycle is usually composed of many segments related to 
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the process dynamics and related production parameters. The length of a segment is 
not necessarily coinciding with the length of the whole cycle as well as to those of the 
other segments. This is why a homogenous resampling is avoided and no reliable 
results can be obtained.   

In this contribution a feature-based resampling method is proposed, which 
requires the definition of reliable features of the signal. Discrete Wavelet Transform 
(DWT) [2] is used to locate a reliable set of features which is used as signal dividers 
specifying the segments to be resampled.  

The time series vectors of the sensor data considered in this paper measured from 
a real industrial example (Fig. 1) comprise the process cycles in a periodic nature of 
the signals [3]. A complete cycle of the considered production machine comprises 
actions of moving cylinders with different characteristics (Fig. 2). The sensor data 
include vibration velocity (V) and vibration acceleration (A) signals in addition to 
other system specific measurements. Vibration measurements are widely used in 
monitoring to support machinery maintenance decisions. The vibration velocity signal 
is a crucial variable to measure medium frequencies (until about 1 kHz), where the 
failure induced results from fatigue and wear out of surfaces. On the other hand, 
acceleration signals are more relevant in extracting transient, process-related, or 
impulse-like incidents, where the localized high frequencies are dominating for short 
times. Two other measurements are included in the example’s sensor data; the system 
hydraulic pressure (P) and the piston displacement of the monitored parts (D). 
Combining system hydraulic pressure and piston displacement provides implicit 
information about the friction and hence the tribological condition of the parts 
surfaces. 
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  Figure 1. Raw data sample (example)       Figure 2. Machine operation cycle (example) 

CLASSIFICATION INDICATORS 

In order to apply a successful classification process, the data must be prepared by 
careful transformation to extract the classification indicators. Redundant information 
should be excluded to avoid deterioration of the accuracy. Accordingly, the 
classification indicators containing the useful information should be presented in a 
recognizable structure suitable for classification, which is referred to as features.  

For classification purposes, the time series vectors of the sensor data (Fig. 1) do 
not conform to the cyclic nature of the considered machine. The classification 
indicators are the indicators of the system states to be classified, and these indicators 
might represent the process cycle as well as parts of it. As an example, Fig. 3 shows 
the vibration velocity of the operation cycles before and after a machine part 
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replacement. It can be seen, considering the signal intensity, that more classification 
indicators are located at the beginning of the cycles. In the case that classification is 
applied directly to the time series vectors, the other parts of the cycle will deteriorate 
the efficiency of the classification (Fig. 4). This is because no considerable difference 
between these points can be observed according to the different machine states. 

In the presented example, extraction of the operation cycles of the machine is a 
preliminary step for further extraction of features. Furthermore, it is important for the 
purpose of study to divide the process cycle into data segments. The operation cycle 
comprises actions of moving cylinders, and these actions have different importance, 
different shape, and accordingly, different characteristics of related real signals. 
Additionally, these actions have to be treated independently. Here in the example the 
machine cycle is divided into 16 data segments, (Fig. 2) each data segment has similar 
characteristics in all cycles. All these data segments of the machine process would 
give information about the behavior of the machine; however, some data segments are 
more informative and have more classification indicators than others. To recognize 
the segments which have more classification indicators, a feature space representing 
the two states of the machine is constructed using a training data set in the form of 
time series. In the feature space the points with the highest separability of the system 
states (the separable points in Fig. 4) are detected and re-allocated to the time series 
vector to specify the best candidate segments for classification. The data segments 12-
14 are found to be the best candidates to be considered. 
                                                      

 Figure 3. Local changes in the cycles (example) Figure 4. Local classification indicators (example) 

FEATURE EXTRACTION OF OPERATION CYCLES 

In this section the proposed approach of feature based resampling is presented and 
applied along with other usual approaches for comparison purposes. 

Zero padding and homogenous resampling approaches 

For construction of the feature matrix as classifier input, cycles with constant 
lengths are required. Padding with zeros is an alternative method providing that 
changes in length are limited which is not the usual case in reality. Because of the 
reliability of the solution deteriorated by zero padding, in the presented example the 
zero padding is applied only for comparison purposes of the time series signals and 
their combinations. 

In order to consider cycles with equal lengths, a process of homogenous 
resampling is applied to the cycles. In this case the most usual length of the cycles is 
used as target length. The problem of this approach is that the lengths of the cycle 
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segments are not coinciding with the length of the cycles (Fig. 5). It is usual to have 
longer cycles with shorter individual segments. 
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                                        Figure 5: Cycles with different lengths (example) 

                 
Wavelet Transformation 

In wavelet analysis [2], signals are decomposed into wavelets of varying 
durations. These wavelets represent localized vibrations of a sound signal or localized 
variations of image details. Wavelets are used in a wide variety of signal processing 
tasks such as compression, removing noise, or enhancing recorded sound or image in 
various ways. Wavelets-based approaches are widely used in classification and 
recognition tasks as feature extraction tools [4, 5]. The performance of the wavelets is 
proved to be more flexible than other usual approaches such as STFT transform, 
where the size of the analysis window is restricted for all frequencies [6,7]. 
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Wavelet analysis is characterized with scales as function of frequencies and 
positions as function of time. It is also often characterized with approximations and 
details. Approximations (A in Fig. 6a) are the high-scale, low-frequency components 
of the signal, whereas details (D in Fig. 6a) are the low-scale, high frequency ones. 
Basically, the original signal is transformed into two sub-signals by two 
complementary filters (Fig. 6a). This process is iterated in the discrete wavelet 
analysis for successive approximations to realize the wavelet decomposition tree (Fig. 
6b). In the reconstruction process the original signal is rebuilt by using the sub-signals 
(selectively in case of denoising) without loss of information. 

In the wavelet packet (WPT) analysis (Fig. 6c) the approximations as well as the 
details of the signal are successively decomposed into sub-signals. This leads to more 
possible decompositions and accordingly more possible representations of the original 
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signal; however the amount of information and the component selection process for 
reconstruction require more efficient techniques than those used for DWT. Entropy 
and energy approaches are used in combination with WPT. Energy can be used as a 
measure of the strength of a signal and equals to the sum of square of the signal 
magnitude, whereas entropy of the signal is a measure of randomness and uncertainty 
and used to describe the complexity of the system. Entropy and energy measures are 
used to detect the similarity between streams of data [8,9,10]. 
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                                   Figure 7: The WPT energy and entropy 

In the presented example of the cyclic data, the extracted cycle segments 
representing a cycle (signal S in Fig. 6c) are decomposed by WPT into different 
frequency bands using 6 depth Daubechies db4 wavelet. A group of sub-signals 
(AAA3 to DDD3 in Fig. 6c) is generated ranging from the low frequencies to the high 
frequency band. The different combinations of A and D indicate the position of nodes. 
Each node represents a certain degree of signal characteristics. The Shannon entropy 
and the total energy of each band signal are calculated (Fig. 7). 

The wavelet packet entropy or energy values on different frequency bands 
construct the feature vector, which reflects the information distribution of signals in 
frequency bands and used as the input vector to the SVM. Since one sub-signal 
corresponds to one entropy value or energy value, the advantage of combining WPT 
and entropy or energy measures is to have the length of the feature vector decoupled 
from the length of the original cycle. This means that different lengths of input cycles 
give a constant structure of the feature vector. On the other hand, since one sub-signal 
corresponds to one entropy or energy value, the feature vector contains only the 
information on frequency bands, i.e. these two methods only focus on describing the 
change in frequency domain.  

Feature-based Resampling Method 

In the case that two signals do not have the same form but the same entropy or 
energy values, difficulties in generalizing the solution with respect to the reliability of 
such high level of signal abstraction occurs.   

In the case of WPT and DWT, the length of the decomposed signals is related to 
the length of the original signal. In the presented example of cyclic signals, it can be 
seen from Fig. 7 that the cycle signals, which are usually of different lengths, have 
similar characteristics and type features. A resampling based on reliable signal 
features (nodes) is proposed to build the feature vector of the classifier. On the other 
hand, because of the noise and disturbances, it is sometimes difficult to detect features 
in the original signal which are similar in form and number in the cycles regardless of 
the state of the system.  
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Figure 8: Signal reconstruction in DWT and resampling 

As the noise and disturbance are random, selective reconstruction of sub-signals in 
DWT can be applied to denoise the signal and detect the reliable features for 
resampling. Another possibility is to detect these features in the reconstructed signal 
from the selected components of the DWT and divide them into segments (6 segments 
in Fig. 8) and considered as the keys for the process of resampling (Fig. 8). In this way 
the time domain of the signal is changed and the corresponding information related to 
the time is disturbed. To solve this problem, the original positions of the discrete 
points in the reconstructed signal are stored in a matrix added to the input matrix of 
the SVM classifier. Here three level Daubechies db4 wavelet is used in the DWT 
decomposition. 

Table 1. Resulted classification accuracies 
Signal 
comb. 

Zero 
padding 

Homog. 
res. 

 WPT- 
 Entropy 

 WPT- 
 Energy 

Feature-based  
resampling 

A   94.54 % 86.21%  94.42 % 95.75 %  94.35 % 
P   91.56 % 83.35%  83.89 % 89.05 %  97.50 % 
V   96.96 % 93.01%  94.67 % 94.65 %  96.79 % 
D   93.66 % 85.33%  88.78 % 92.89 %  95.17 % 

A-P   95.53 %        -  92.68 % 93.64 %  94.67 % 
A-V   97.36 % -  93.17 % 90.15 %  96.42 % 
A-D   96.06 % -  92.26 % 94.48 %  94.85 % 
P-V   97.14 % -  93.23 % 93.32 %  96.80 % 
P-D   95.41 % -  89.51 % 91.68 %  98.56 % 
V-D   97.34 % -  92.78 % 95.17 %  97.11 % 

A-P-V   97.44 % -  93.44 % 90.15 %  96.87 % 
A-P-D   96.23 % -  92.18 % 92.96 %  94.95 % 
A-V-D   97.67 % -  93.02 % 94.29 %  97.00 % 
P-V-D   97.44 % -  92.82 % 95.24 %  97.02 % 

A-P-V-D   97.76 % 93.45%  94.53 % 95.48 %  97.32 % 

CLASSIFICATION AND RESULTS 

A support vector machine classifier is applied to classify the states of the 
presented experimental example. The SVM method introduced by Cortes and Vapnik 
[1], is based on statistical learning theory and considered as one of the best techniques 
used in the field of pattern recognition. The learning problem setting of SVM [11] is 
to find the unknown nonlinear dependency mapping between the high dimensional 
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feature matrix and the output vector using the concept of maximum margin for better 
generalization. A decision function is used to classify the unknown data points 
according to the position and distance from the separating hyperplane (Fig. 9).  

Two classes are defined to train the SVM classifier [12]; the first one is the state 
before material change (old part), and the second is the state after material change 
(new part). A training data of 200 cycles, 100 cycles each class, were taken randomly 
from 4 places of the data. A linear kernel is considered because of the high number of 
attributes. The test set has a size 15874 cycles. 

The resulting classification accuracies for the four machine parameters (A, P, V, 
and D) and their possible combinations, using the different approaches discussed 
above are presented in Table 1. As mentioned before; the results of the direct 
application are added only for comparison because of the lack in the solution 
flexibility which results from the zero padding. In general, it can be seen that the 
results of the feature-based resampling are better than those of entropy and energy 
WPT. Additionally, the combination of signals improves the accuracy and the highest 
combination accuracy (P-D: 98.56%) is achieved by using the feature-based 
resampling approach. 

Maximum 
margin

X2

X1

Optimal
 hyperplane

State 1

State 2

Figure 9:  Support vector machine (Feature space) 

The resulting classification accuracies for the possible combinations of the DWT 
sub-signals (i.e. Approximations (Ax) and Details (Dx)) extracted from the four 
machine parameters (A, P, V, and D) are presented in Table 2. The results are based 
on the feature based resampling approach with and without consideration of the 
original positions (With/Without position) after resampling. Original positions are 
considered by connecting the two matrices of the resampled cycles and the original 
positions together. It should also be mentioned that the connected position matrix in 
Table 1 is optimized by a weighting factor in the feature matrix in order to improve 
the accuracy of the solution. No weighting factor was applied to the results in Table 2.   

It can be seen from Table 2, that the accuracy of classification is improved by 
considering the position information. It can also be seen that the optimal level for the 

Table 2. Resulted classification accuracies of DWT components 
Signal DWT 

combination 
Without 
position 

With 
position  

Signal DWT 
combination 

Without 
position 

With 
position 

A A3 83.77% 83.85% V A3 94.00% 94.01% 
 A3+D3 87.63% 87.75%  A3+D3 94.25% 94.27% 
 A3+D3+D2 90.31% 90.39%  A3+D3+D2 94.37% 94.38% 
 A3+D3+D2 

+D1
90.67% 90.70%  A3+D3+D2 

+D1 
94.39% 94.48% 

P A3 92.33% 93.15% D A3 93.97% 95.17% 
 A3+D3 94.10% 94.21%  A3+D3 92.72% 93.03% 
 A3+D3+D2 93.48% 93.81%  A3+D2 91.57% 91.78% 
 A3+D3+D1 92.93% 93.31% A3+D1 91.95% 92.20% 
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classification (DWT combination) is different from machine parameter to another. 
This means that the extracted segment nodes, which not necessarily depend on some 
underlying system dynamics, are not only based on approximation indicatives. They 
are also based on details as well. 

CONCLUSION 

In this work a feature-based resampling approach for industrial processes with 
periodic data is presented. The approach is used for fault classification and diagnostic 
purposes and based on the DWT to locate a set of reliable features which is used as 
signal dividers specifying the segments to be resampled. A real industrial example of 
process cycles with periodic nature of signals is presented to demonstrate the 
efficiency of the approach compared to other usual approaches. It can be shown that 
the results of the feature-based resampling are significantly better than those of 
entropy and energy WPT with considering preserving the position information. It can 
also be shown that the optimal level of wavelet decomposition is different between 
machine parameters, and depend strongly on approximation and detail indicatives as 
well.
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