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ABSTRACT 
 

The load reconstruction process is actually to solve an ill-posed inverse problem in 
structural dynamics. The recursive three-step filter (RTSF) and the Kalman filter with 
unknown inputs (KF-UI), two algorithms recently proposed in electrical engineering, both 
can simultaneously deliver the optimal estimates of the system states and the unknown 
inputs, without any assumption on the input dynamics. This unknown input estimation 
ability and the inherent real-time operation possibility make these two types of estimators 
very promising for online load reconstruction. 

In this paper, both the RTSF and the KF-UI are first generalized to be compatible with 
the case that the process noise and the measurement noise are correlated. Then the 
reconstruction performance of the generalized RTSF (G-RTSF) and the generalized KF-
UI (G-KF-UI) are evaluated using both simulations and experiments. 

 
 
 

INTRODUCTION 
 

The knowledge of external load applied on a structure is very important in many 
fields. For example, the actual loading information can help to improve the product 
design; the external load could be used for feed-forward control in structural vibration 
control design; the loading history can also be used in the damage prognosis study to 
predict the remaining lifetime of the investigated structure [1]. In practice, the structural 
loads may not be measured directly. For such a case, a widely used strategy is to 
reconstruct such loads from dynamic response measurements. This is often an ill-posed 
inverse problem, in the sense that small changes in the measurements, e.g. the existence of 
measurement noise, may lead to a big deviation in the reconstruction result [2]. 
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In order to solve this ill-posed inverse problem, several unknown input estimation 
algorithms, which can run in real-time and are robust to the measurement noise and the  
modelling error, have been adopted and made on-line force reconstruction become 
possible. Similar to the idea in [3], Niu et al. adopted the recently published Kalman 
filter with unknown inputs (KF-UI) method for the force reconstruction purpose [4]. 
This KF-UI method has no assumption on the input dynamics and can provide the 
unique least-squares and minimum-variance unbiased estimates of the system states 
and unknown inputs [5].  

It can be proved that the KF-UI has the same filter form as the recursive three-step 
filter (RTSF) presented earlier by Gillijns and De Moor [6]. However, the KF-UI and 
the RTSF have different necessary and sufficient conditions (NASCs), which may lead 
to distinct requirements in the practical load reconstruction, e.g. different sensor 
numbers, sensor types and the need of unbiased estimate of initial condition. 
Furthermore, it was noticed by the authors that the employment of accelerometers will 
result in the correlation of the process noise and the measurement noise, which is in 
contradiction with the assumption made in the derivation of the KF-UI and the RTSF 
that the process noise and the measurement noise are uncorrelated. Such a contradiction 
in turn may theoretically affect the optimality of the estimation result. Motivated by this 
point, the RTSF and the KF-UI are first generalized to be compatible with the 
correlation of the process noise and the measurement noise in this paper. On the other 
side, the process noise is usually not so large in practice. So it is also reasonable to 
propose the question that how much improvement such a generalization operation can 
bring. To investigate the above issues, the reconstruction performance of the 
generalized RTSF (G-RTSF) and the generalized KF-UI (G-KF-UI) are evaluated 
using both simulations and experiments based on a laboratory two-storey structure. 

COMMON FILTER FORM OF THE RTSF AND THE KF-UI 

Consider the following linear discrete-time system, 

kkkkkk

kkkkkk
vdHxCy
wdGxAx 1 , (1) 

where n
k Rx  is the state vector, m

k Rd  is the unknown input vector, and p
k Ry

represents the output vector. n
k Rw  is the process noise and p

k Rv  denotes the 
measurement noise. Both kw  and kv  are assumed as mutually uncorrelated zero-mean 
and white random signals with known covariance 0wwQ T

kkk E  and 
0vvR T

kkk E , ( E  is the expectation operator). System matrices kA , kG , kC and

kH  are of appropriate dimensions, with kA  assumed to be nonsingular. Define 1|ˆ kkx

as the a priori state estimate, kk|x̂  the a posteriori state estimate, kk|d̂  the input 

estimate, x
kk 1|P  the a priori state estimate error covariance, x

kk|P  the a posteriori state 
estimate error covariance, d

kP  the input estimate error covariance, and xd
kP  the cross 

covariance between the estimate errors of kx  and kd . It can be proved that the RTSF 
and the KF-UI has the following common filter form. 
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Initialization
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Time update
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Measurement update
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COMMON FILTER FORM OF THE G-RTSF AND THE G-KF-UI 

Define k
T
kkE Svw 1 , the common filter form of the G-RTSF and the G-KF-UI is 

derived using the method suggested in [7].  

Initialization

00ˆ |x , 0|0d̂ , x
|00P , d

0P , xd
0P ; (13)

Time update

1|111111
ˆˆˆ kkk|kkkk|k dGxAx ; (14)

1
1

1

11

111
111 kT

k

T
k

d
k

dx
k

xd
k

x
|kk

kk
x

k|k Q
G
A

PP
PP

GAP ; (15)

3



Measurement update
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The NASCs of the G-RTSF and the G-KF-UI are listed in Table 1. It is noted here 
that the G-RTSF has the same NASCs as those of the RTSF, and the G-KF-UI has the 
same NASCs as those of the KF-UI. 

Table 1. Necessary And Sufficient Conditions (NASCs) 
RTSF / G-RTSF KF-UI / G-KF-UI

a) Unbiased estimate 0x̂ of 0x  is 
available;

b) kH  has full column rank, 1k .

a) mnp 2 ;

b)
TT

k
T
k

TTTTT CAAA,,CA,C 110100

has full column rank, 1k ;
c) iiii GACH 1  has full column rank, 

1;1,,2,1,0 kki ;
d) kH  has full column rank, 1k .

Either from an experimental modal analysis or from an updated computational 
model (e.g. finite element model), a structure can be represented in the form of Eq. (1) 
by defining the state vector as 

TT
k

T
kk qqx ; , where 2n

k Rq  represents the modal 
displacement vector and 2n

k Rq  denotes the modal velocity vector. Then the NASC 
(a) of the G-RTSF requires that the unbiased estimate of the initial modal displacement 
and the initial modal velocity should be known. According to the analysis in [4], the 
NASC (b) of the G-RTSF and the NASC (d) of the G-KF-UI indicate the number of 
acceleration measurements should be at least equal to the number of unknown input 
forces. The NASC (a) of the G-KF-UI requires the sensor number should be at least 
equal to the sum of the number of unknown input forces and the number of modes 
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included in the structural model. The NASC (b) and (c) of the G-KF-UI restrict the 
sensor number, sensor types and sensor locations. From the analysis above, it seems 
that the G-RTSF may need less sensors (i.e. only accelerometers are needed by the 
G-RTSF) when the unbiased estimate of the initial condition is available.  

RECONSTRUCTION PERFORMANCE EVALUATION 

In this section, a laboratory two-storey structure is selected as a benchmark. Using 
the PolyMAX algorithm implemented in the commercial software LMS Test.Lab, the 
modal model of this structure was identified in which the first two modes in the x 
direction are included. The identified modal model was transformed to the form as in 
Eq. (1). According to the NASCs listed in Table 1, the G-RTSF needs only two 
accelerometers, while the G-KF-UI needs not only two accelerometers but also two 
strain gauges. The process noise and the measurement noise are both assumed to be 
stationary, and their covariance matrices are named as Q  and R . According to the real 
measurements from the sensors in the laboratory condition, the variance of the noise 
from the strain gauge was set as 2213101 mm  and the variance of the noise from the 
accelerometer was chosen as 422105.0 sm . The diagonal elements of Q  are 
selected as 0, 0, 3101  and 3101  , respectively, and the off diagonal elements are 
all set as 0. The identified structural model and the settings for the process noise and the 
measurement noise are used in the following simulation and experimental studies. 

Figure 1. Laboratory Two-Storey Structure:  
under impact force (left); under wind load (right) 

Simulation Study 

As previously mentioned in the introduction section, one of the motivations of this 
paper is to investigate how much improvement the G-KF-UI and the G-RTSF can bring 
compared to the KF-UI and the RTSF. This issue was study in this subsection by using 
a simulation. The two input forces were both set as 0. The identified structural model 
was used as the system model. The process noise and the measurement noise were 
simulated as normally distributed zero-mean white random signals, with variance 
values set in Q  and R . This simulation was performed in the MATLAB SIMULINK 
environment and the simulation time was 120 seconds. Part of the reconstructed Force 
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1 and Force 2 is shown in Figure 2, and the variances of the reconstruction errors are 
listed in Table 2. It can be seen that the variances of the reconstruction errors from the 
G-KF-UI and the G-RTSF are almost equal to those from the KF-UI and the RTSF for  
this case. Only very small improvements are brought. This is also reflected in Figure 2,
where the red curves and the blue curves are almost superimposed. Besides this, it is 
also noticed that the reconstructed forces from the RTSF and the G-RTSF drift away 
from their real values. In order to investigate the reasons for such a drifting, more 
simulation and experimental studies are carried out in the subsequent subsection. 

Figure 2. Reconstruction Result: from the KF-UI and the G-KF-UI (left); from the 
RTSF and the G-RTSF (right) 

Table 2. Variance of the Reconstruction Error 

Method Variance [ 2N ] of 
Recon. Error of Force 1 Recon. Error of Force 2 

KF-UI 0.12120581 0.09353909

G-KF-UI 0.12119934 0.09352850

RTSF 21017.2250781 2105.14929214
G-RTSF 210507.225076 2105.14929354

Figure 3. Reconstructed Wind Load in the Simulation Study with Biased Estimate 
of the Initial Condition: the whole duration (left); the enlarged plot (right) 

Another interesting point is how the reconstruction performance will be when the 
estimate of the initial condition is biased. Because in some practical cases (e.g. wind 
load), it is not so easy to get the unbiased estimate of the initial condition. In this study, 
the wind load was generated by an electric fan and applied on the upper storey of the 
two-storey structure, where a plate was attached to collect the wind load, as shown in 
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Figure 1. A force sensor was placed between the plate and the upper storey to measure 
the wind load. The measured wind load was fed into the structural model as input force, 
and the generated structural responses from the structural model were provided to the 
G-KF-UI and the G-RTSF for reconstructing this wind load. In this procedure, no 
process noise and no measurement noise were considered. The reconstruction results 
from the G-KF-UI and the G-RTSF are shown in Figure 3. It can be seen that a 
deviation appears in the reconstruction result of the G-RTSF, while the G-KF-UI still 
can reconstruct the forces. This actually shows the ability of the strain gauges in 
measuring the static part of the input force and correcting the biased estimate of the 
initial condition. 
Experimental Study 

After an evaluation study in the simulation environment, real structural response 
measurements are used in the experimental study, where an impact force and a wind 
load were applied. As shown in Figure 4 and Figure 5, the G-KF-UI still can 
reconstruct both types of forces, while the reconstructed forces from the G-RTSF drift 
away from their real values again. One explanation to this is that there is a slowly 
changing bias existing in the acceleration measurement, as shown in Figure 6. Such 
bias may let the G-RTSF “think” that there is a “force” applied on the structure. Besides 
this, it is also found that the poles of the discrete-time structural model are quite close to 
the unit circle, which indicates the system is quite sensitive to the noise. The 
employment of strain gauges somehow makes the G-KF-UI more robust to the noise. 
Furthermore, even though the reconstructed forces from the G-RTSF drift way, the 
acceleration measurements were still successfully reconstructed by these two 
approaches for the wind load case, as shown in Figure 7. This is due to the inter 
connection of the state estimate and input estimate of the G-KF-UI and the G-RTSF. 
Such acceleration measurement reconstruction ability was also presented in [8].  

Figure 4. Reconstructed Impact Force in the Experimental Study: the whole duration 
(left); the enlarged plot (right) 

Figure 5. Reconstructed Wind Load in the Experimental Study 
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Figure 6. Slowly Changing Bias in the 
Measurement from Accelerometer 2 

Figure 7. Reconstructed Acceleration 
Measurements in the Experimental Study 

CONCLUSIONS 

According to the analysis in this paper, when the process noise is small, the 
complexity of considering the correlation of the process noise and the measurement 
noise can be ignored and the KF-UI can be directly used for force reconstruction 
instead of the G-KF-UI. It is possible to use either the RTSF or the G-RTSF to 
reconstruct the peak value of the impact forces with only accelerometers, but these two 
methods are very sensitive to the measurement noise. The KF-UI and the G-KF-UI can 
reconstruct both impact force and the wind load with biased estimate of the initial 
condition, but both acceleration and strain (or displacement) measurements are needed. 
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