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ABSTRACT 
 
A novel concept of incorporating the mode shape ratios of cable was recently 

introduced to develop an accurate method for the determination of cable forces. In this 
method, a key issue in the optimization process of effective vibration length was to 
describe the sensor locations by selecting the pre-known middle point of cable as the 
reference origin point. With this choice, it is equivalent to assume the symmetry of 
mode shape functions with respect to the middle point of cable. In other words, a 
crucial restriction of practically symmetric boundary constraints at both ends is 
imposed. To deal with such difficulties, this method is further generalized in the current 
study by introducing additional shifting parameters of origin point to effectively 
consider the unsymmetrical boundary constraints. Several numerical problems of the 
more complicated nonlinear optimization process associated with this new formulation 
are first discussed, followed by verifications with extensive numerical examples. 

 
 

INTRODUCTION 
 
An accurate estimation of stay cable forces typically play an important role in the 

health monitoring of cable-supported bridges. Due to its simplicity, the ambient 
vibration method is commonly adopted by first identifying the cable frequencies from 
the vibration measurements. With given vibration length and flexural rigidity, an 
analytical or empirical formula is then used with these cable frequencies to determine 
the cable force. To improve the accuracy of the ambient vibration method, an 
appropriate selection of parameter values to truthfully reflect the actual vibration 
behavior is particularly important. In practical cases, rubber constraints and special  
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anchorage designs are usually installed near both ends of stay cables. These devices, 
however, significantly increase the uncertainty of boundary conditions and complicate 
the choice of effective vibration length, which is generally the most sensitive parameter 
to determine the cable force. Furthermore, each stay cable made by separately arranged 
steel strands is normally encased in an HDPE tube filled with flexible grouting material 
to resist corrosion. This situation also induces great difficulties in correctly obtaining 
the cross-sectional area moment of inertia and the subsequent flexural rigidity of cable.  

Aimed to tackle the above problems, a novel concept of incorporating the mode 
shape ratios of cable was recently introduced by the authors to develop a convenient 
and accurate method for the determination of cable forces [1-2]. Multiple synchronized 
vibration signals of a stay cable were first processed to obtain the mode shape ratios at 
various sensor locations for each observable mode. These ratios were then compared 
with the sinusoidal mode shapes based on the simply-supported beam model with axial 
tension to independently obtain an optimal effective vibration length such that the total 
squares error for all the considered modes is minimized. With this length obtained, the 
cable force and flexural rigidity can subsequently be solved by simple linear regression 
techniques using the identified cable frequencies and the analytical formula. In this 
method, a key issue in the optimization process of effective vibration length was to 
describe the sensor locations by selecting the pre-known middle point of cable as the 
reference origin point for the sinusoidal shape functions. With this choice, it is 
equivalent to assume the symmetry of mode shape functions with respect to the middle 
point of cable. In other words, a crucial restriction of practically symmetric boundary 
constraints at both ends is imposed with this mathematical formulation.  

Even though the cable anchorage systems in most of the practical designs may not 
be far away from this simplification, there certainly exist a number of cases with 
apparent unsymmetrical boundary constraints, especially when supplementary 
dampers are installed at the deck ends of stay cables. To deal with such difficulties, this 
method is further generalized in the current study by introducing additional shifting 
parameters of origin point in the sinusoidal shape functions to effectively consider the 
unsymmetrical boundary constraints. Several numerical problems of the more 
complicated and sensitive nonlinear optimization process associated with this new 
formulation are first discussed in this paper, followed by verifications with extensive 
numerical examples. 

 
 

STAY CABLE AND ITS ANALYSIS WITH A SIMPLIFIED MODEL 
 

A stay cable system can be typically divided into three parts: (1) a free length 
section in the middle; (2) two anchorage zones at both end; and (3) two transition zones 
between the previous two parts. The combination of the anchorage zone and the 
transition zone is usually called the cable anchorage device, whose detailed design 
varies with the suppliers. But in general, flexible rubber constraints are installed at the 
front end of anchorage device to reduce the bending stress at anchorage ends induced 
by lateral cable vibrations, centralize the cable, alleviate the fatigue problem, and 
additionally provide certain amount of damping. Because of the complicated anchorage 
device, it is difficult to accurately define the boundary conditions and effectively model 
the sections close to both ends in performing the cable analysis. Nonetheless, it is 
noteworthy that the effect of anchorage device on the cable vibration should be limited 
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in a finite range near the anchorage ends. Thus, the primary free length section in the 
middle of cable ought to be eligibly modeled by a simply supported beam with an axial 
tension. The only key problem is how to select an effective length for this model. 

Considering a simply supported beam subjected to an axial tension T, an analytical 
formula for the modal frequencies of this model can be solved as: 
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where L signifies the beam length, m  symbolizes the mass per unit length, Ê  denotes 
the Young’s modulus, I represents the cross-sectional area moment of inertia, and kf  is 

the natural frequency of the k-th mode in Hz. Moreover, the mode shape corresponding 
to each modal frequency kf  is found to be in the form of sinusoidal functions: 

sin
k x

L


,   1,  2, 3, k    (2)

 
 

METHODOLOGY 
 

It is especially noteworthy in Eq. (2) that this set of modal shapes sorely depends on 
the vibration length L. This provides a significant contrast to Eq. (1) where several 
parameters are involved. Even if m  can be considered a known value because of its 
reliable estimation in practical applications, it is obvious from Eq. (1) that each modal 

frequency is still a function of T, L, and the flexural rigidity Ê I. In other words, all the 
above three unknown parameters are coupled if only the modal frequencies are 
available. An enlightening clue disclosed from Eq. (2) is that the effective vibration 
length of cable can be independently determined as long as the information of modal 
shape functions is accessible. With this obtained effective vibration length, each modal 
frequency turns out to be simply a linear function of the cable force and the flexural 
rigidity. Therefore, the optimal values for the two remaining unknown quantities can 
then be solved from the identified modal frequencies utilizing the least squares method.  

It is unavoidable to conduct multiple synchronized measurements for estimating 
the mode shape ratios. Assume that 1 2( ,  ),  ( ,  ),  ,  ( ,  )ny x t y x t y x t  are n signals 

simultaneously measured from n different locations of the same cable and only the m 
most significant modes with major contribution are considered. With these 
measurements, the mode shape vector at the n measured points for the k-th mode can be 
estimated from the Fourier transforms 1 2( ,  ),  ( ,  ),  ,  ( ,  )nY x Y x Y x    of 

measurements at k   and expressed as: 
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where  , , 21 kk , and mk  stand for the mode orders of the m major modes, respectively. 

Since the mode shape ratios are theoretically real, the real parts of the estimated values 
from Eq. (3) are taken as the mode shape ratios and their trivial imaginary parts cab be 
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used to indicate the effectiveness of these measurements. It should be also noted that 
any one of 1 2( ,  ),  ( ,  ),  ,  ( ,  )k k n kY x Y x Y x    can be taken as the common 

denumerator ( ,  )i kY x   in Eq. (3). 

The sinusoidal shape functions in Eq. (2) are obtained by setting the origin point at 
one end of the beam model to create a range of 0 x L  for the independent variable. 
However, the vibration length of model and consequently the corresponding boundary 
points are left open to be determined in the current case of cable force estimation. To 
effectively describing the measurement locations, the authors recently proposed [1-2] 
an origin shift to the middle point between the front edges of rubber constraints at both 
ends, which can be decided without knowing the vibration length in advance. With  this 
coordinate transformation coming from the assumption of symmetric anchorages at 
both ends, the even mode shapes remain as sine functions, but the odd mode shapes 
turn into cosine functions, both falling in the range of / 2 / 2L x L   . In other 
words, the theoretical mode shape vector k  can be expressed in the interval 

/ 2 / 2L x L    as: 
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where ka  denotes the amplitude coefficient of the k-th mode and the function cosin( )  

is defined by 
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An appropriate error function has to be defined as the objective function before the 
optimization procedures can be performed. In the current case, the optimization 
problem for determining the effective vibration length of cable is to search for the 
optimal value of L such that the error by comparing the estimated mode shape ratios of 
Eq. (3) in all the m major modes with their corresponding values from theoretical mode 
shape functions can be minimized. Therefore, the objective error function for 
optimization was previously defined [1-2] as: 
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It should be noticed that there are m+1 unknown coefficients in Eq. (6) including m 
different amplitude coefficients ka and L. Furthermore, this is a nonlinear optimization 

problem because L appears in the denumerator of cosin function. 
To generalize the previously proposed symmetric formulation, an origin shifting 

parameter kd  can be additionally introduced such that each sinusoidal shape function 

is free to move toward either anchorage end. Furthermore, another adjustment is also 
made in this study by assigning an independent vibration length kL  for each mode to 

create more flexibility in matching the mode shape ratios. With these two modifications, 
the total error function for optimization is redefined as: 
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and the positive value of kd  indicates that the corresponding shape function shifts 

towards the right end. It needs to be particularly noted that there are totally 3m 
unknown coefficients in Eq. (7) compared to m+1 of them in Eq. (6). As shown in Eq. 
(8), however, the three unknown parameters for each mode are independent of those of 
the other modes and can be obtained from the error function ke  for each individual 

mode. Therefore, the more parameters with this new formulation would not increase 
the computational load in the optimization process. Instead, separation of effective 
lengths for various modes would greatly improve the efficiency of this methodology. 

With the optimal length obtained and the identified modal frequencies already 
known, Eq. (1) becomes a linear function of the cable force and the flexural rigidity: 
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To decide these two remaining unknown quantities, consistent optimization procedures 
by considering the same m modes used in determining the vibration length are 
suggested. More specifically, Eq. (1) is rearranged into the form of a classical linear 

regression problem such that T and Ê I can be conveniently. 
 
 

NUMERICAL VERIFICATION 
 

The newly developed methodology is applied to analyze the stay cables of Chi-Lu 
Bridge. This bridge is a two-span (120m+120m) cable-stayed bridge connecting the 
two towns Chi-Chi and Lu-Ku located in central Taiwan. There are totally 34 pairs of 
stay cables installed on Chi-Lu Bridge. SAP2000 software is adopted in this section to 
construct the finite element models for the longest cable R33 and shortest cable R01 
with input parameters listed in Table 1 to numerically verify the feasibility and 
accuracy of the proposed method. The model for each cable is composed of 500 frame 
elements of equal length together with two linear spring elements located at the front 
end locations of the actual rubber constraints, as shown in Fig. 1. 

With the FE models prescribed above, the corresponding modal frequencies and 
mode shape vectors can be obtained by running the modal analysis in SAP2000 and are 
then regarded as the identified modal parameters in practical applications. To imitate  

Table 1. Input parameters for FE models of Cables R01 and R33. 

Cable 
No. 

Total 
Length (m) 

Length between 
Springs (m) 

Mass per Unit 
Length m  (kg/m) 

Flexural Rigidity 
Ê I ( 2mMN  ) 

Cable Force 
T (MN) 

R01 29.30 23.06 61.30 0.868 3.25 

R33 126.42 118.26 48.00 0.531 2.14 
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(a) Cable R01 

(b) Cable R33 

Figure 1. Finite element models of Cables R01 and R33. 

the practical situations where only a few measurements close to the deck end can be 
conveniently taken, the mode shape ratios at 3 nodes corresponding to accessible 
measurement locations are chosen for determining the effective vibration length. It is 
also assumed that the 2nd, 3rd, and 4th mode are the major contribution modes in each 
case. In other words, n = 3, m = 3, 1 2k  , 2 3k  , and 3 4k   are adopted for 

optimization in the numerical examples. 
Although Eq. (7) provides a generalized formulation to deal with unsymmetrical 

boundary conditions and holds the advantage in portioning the optimization into each 
mode, it is also associated with a major numerical difficulty regarding the convergence 
in the optimization process. Compared to the symmetrical formulation of Eq. (6) with 
which a rapid and smooth convergence can be attained by any reasonable initial guess 
[1-2], the unsymmetrical formulation with the addition of shifting parameter kd  results 

in a much more complicated optimization problem extremely sensitive to the initial 
guesses. To illustrate this difficulty, the error function E for the case of Cable R01 with 
m = 1 and 11k  is plotted in Fig. 2 over a practically possible range of 1dd   and 

1LL   under a prescribed value of 1a . It is clear that E is basically a smooth function of 
d and L with a canyon shape, but its value abruptly drops along a slanted straight line on 
the d-L plane. Closer examination along this deep trench reveals its remarkable 
roughness, especially in the neighborhood of the global minimum. In other words, the 
global minimum is surrounded by numerous local minima. Accordingly, the 
optimization processes starting with different initial guesses could end up with 
converging to diverse local minima and the global minimum is particularly difficult to  

(a) 2D plot (b) 3D plot 

Figure 2. Total square error function under different values of parameters. 

log E 

L1=3.5 m L2=2.7 m 

L=29.303 m 3.25MN 3.25MN

L=126.42 m 2.14MN 2.14MN 

L1=3.5 m L2=4.6 m 
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reach. But on the other hand, Fig. 2 also suggests that this problem may not be a fatal 
one in the sense of engineering applications. Since all the local minima including the 
global minimum resides in a very narrow region on the d-L plane, the convergent 
values of d and L obtained from optimization with various initial guesses should all be 
close and essentially make no difference. 

According to the above investigation, two key features are particularly important 
for developing a feasible approach to crack the numerical puzzle associated with the 
unsymmetrical formulation. First, the convergence complexity is induced by adding the 
shifting parameter kd  and a simple optimization problem similar to that resulted from 

the symmetric formulation can be resumed if kd  is removed out of the optimization 

process. Besides, keeping the initial guesses for d and L in the deep trench range would 
significantly facilitate the convergence rate. Consequently, an efficient algorithm is 
established in this study by minimizing Eq. (7) with given values of kd . In this case, 

the optimization problem is reduced to that of Eq. (6) and the optimal parameter values 
need to be decided from different trials of kd . Because the reasonable values of kd  are 

typically limited to the range between 2/1L  and 2/2L  as shown in Fig. 1, the 

computational cost for trying different values of kd  in this range can be kept in an 

acceptable manner. Furthermore, at least two values of kd  (say, 0 and other possible 

values from engineering judgments) can be tried first to obtain the corresponding 
sub-optimal values of kL . With these few sub-optimal pairs of kd  and kL  available, a 

straight line on the d-L plane is then easily determined by linear regression to locate the 
deep trench as shown in Fig. 1. For the remaining trials of kd , the initial guess of kL  

decided by the regressed line would certainly accelerate the optimization process.  
To verify the convergence of the proposed optimization algorithm, the results for 

the case of Cable R01 with both spring coefficients equally taken as 410sK ,  610 , 

and N/m 108 are listed in Table 2. In this table, the values of optimal parameters and 
error function determined by simulated shape ratios of the first mode are compared for 
three different divisions of d between 2/1L  and 2/2L . As expected, a smaller value 
of total error E closer to the global minimum is obtained with a larger number of 
divisions in all the cases. More importantly, the optimal values for the effective length 
and shifting parameter are slightly different with either 20, 40, or 80 divisions of d, but 
all with a negligible variation as previously discussed. In other words, 20 trials of d 
between 2/1L  and 2/2L  should be sufficient in this case. In fact, the corresponding 
results for the case of Cable R33 share exactly the same trend. To be more conservative, 
the results in the following analysis are all obtained under 80 trials of d. 

The values of effective vibration length and shifting parameter determined for  

Table 2. Optimal parameters and errors of Cable R01 determined by simulated shape ratios of 1st mode. 

Spring 
Coefficient

sK  (N/m) 

Effective Length with 
Different Divisions of d (m)

Shifting Parameter with 
Different Divisions of d (m)

Total Error E with Different 
Divisions of d ( 1010 ) 

20 40 80 20 40 80 20 40 80 
410  28.07 28.28 28.17 0.47 0.39 0.43 93.0 23.7 5.50 
610  26.03 26.03 25.92 0.06 0.06 0.11 56.1 56.1 1.55 
810  22.74 22.74 22.74 0.06 0.06 0.06 5.31 5.31 5.31 
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Table 3. Optimal parameters of Cable R01 determined by simulated shape ratios of different modes. 

Spring 
Coefficients sK  

(N/m) 

Effective Length for 
Different Modes (m) 

Shifting Parameter for 
Different Modes (m) 

2nd 3rd 4th 2nd 3rd 4th 
610 + 610  26.03 26.22 26.54 0.14 0.18 0.23 

510 (L)+ 710 (R) 25.95 26.05 26.08 1.36 1.37 1.41 
 

Table 4. Tensions of Cables R01 and R33 determined by 3 simulated mode shape ratios. 

Spring 
Coefficients sK  

(N/m) 
Formulation 

Tension T of Cable R01 (106N) Tension T of Cable R33 (106N)

Given 
Value 

Estimated 
Value 

Error 
(%) 

Given 
Value 

Estimated 
Value 

Error 
(%) 

610 + 610  
Unsymmetrical 

3.25 

3.25 0.14 

2.14 

2.15 0.34 

Symmetric 3.66 12.6 2.14 0.18 

510 (L)+ 710 (R) 
Unsymmetrical 3.25 0.06 2.14 0.09 

Symmetric 5.30 63.2 2.25 5.33 

different modes (2nd, 3rd, and 4th) of Cable R01 are arranged in Table 3 where a 
situation with both spring coefficients equally taken as N/m106  is compared with the 
other with a left spring of N/m105  and a right spring of N/m107 . It is apparent that the 
optimal parameters determined for different modes are basically consistent. Particular 
attention needs to be paid on the optimal values of shifting parameter. A minor negative 
value of shifting parameter in the case with even springs is caused by the slight 
asymmetry in geometry ( m7.2m5.3 21  LL ), while a larger negative value in the 
other case truthfully reflect the effect of uneven springs. 

With the obtained optimal parameters, the given modal frequencies for the 3 chosen 
modes can be substituted into Eq. (9) to solve the cable force and flexural rigidity. The 
results for Cables R01 and R33 are listed in Table 4, from which a few enlightening 
conclusions can be made. The results based on the previously developed symmetric 
formulation are also presented for contrast. It is first noted that the accuracy of the 
newly proposed method in estimating the cable force is superb with errors far less than 
1% in all the cases. On the other hand, the error for the case of the short cable R01 using 
the symmetric formulation reaches 13% when small asymmetry in geometry occurs 
and can even go as high as 63% if the effect of uneven springs is also involved. In the 
cases for the long cable R33, the benefit of applying the new method is not as 
significant, obviously due to the relatively trivial influence range of boundary 
conditions for the long cable. However, the use of symmetric formulation in the 
situation of uneven springs still induce more than 5% of error, which can be 
successfully reduced to less than 0.1% with the unsymmetrical formulation. 
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