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ABSTRACT 
 
The understanding of the propagation behaviour of high frequency elastic waves 

(Lamb waves) in thin-walled layered structures is a very important basis of structural 
health monitoring (SHM) in large-scale constructions. 

This paper deals with the numerical simulation of the wave propagation using the 
spectral finite element method (SFEM) in the time domain. In the following, this 
method is explained and investigations in a 7-ply composite consisting of 
unidirectional layers and twill weaves are presented. In this context, the employed 
delamination model obtained by node separation is compared with a delamination 
model made up of contact elements. 

 
 

INTRODUCTION 
 
The complete inspection of lightweight structures for defects, e.g. by scanning 

inspection methods, is cost‐intensive and time‐consuming. Therefore, structural health 
monitoring methods which use the selective excitation and propagation of 
high‐frequency elastic waves (Lamb waves) are currently under investigation, 
especially for possible use in carbon fibre reinforced plastics (CFRP), e.g. for 
detection, localisation and assessment of delaminations. In order to further develop 
this technology and to better understand the related phenomena, computational 
analysis of Lamb waves has become a very important issue. 

Since analytical computation of lightweight shell and plate structures is limited to  
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simple boundary and loading conditions, numerical methods, such as finite element 
method (FEM), boundary element method (BEM) or the spectral element method in 
the frequency domain, have been developed in the last decades. In this work, the 
spectral finite element method (SFEM), cf. [1] and [2], is under investigation, which 
originates from the computational analysis in geophysics, cf. [3]. The basic ideas are 
illustrated in the following with emphasis on plane strain elements. 

 
 

SPECTRAL FINITE ELEMENTS IN THE TIME DOMAIN 
 

Shape functions for spectral finite elements 
 
The shape functions for SFEM are built by the Lagrangian polynomials which 

read in the one-dimensional case with coordinate  
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Here, n is the degree of the polynomial with n+1 interpolation points and j is the 
node number with non-vanishing function value. As shown in equation (1) the 
position of k is user-defined. In this case the interpolation points are placed at the 
Gauss-Lobatto-Legendre (GLL) points which are obtained by the solution of 
 2(1 ) ( ) 0nP   . (2)

Here, nP  denotes the first derivative of a Legendre polynomial of degree n and the 

term (1-2) ensures two fixed interpolation points at the boundaries of the interval  
[-1, 1]. The 2D shape functions result by multiplying the in -, resp. - direction 
individual ordered 1D Langrangian polynomials. Motivation for selecting the GLL 
points as interpolation points of the 2D shape functions is the employed GLL 
integration scheme. The interpolation points of the shape functions as well as the 
integration points of the GLL quadrature are located at the GLL points. 

In the two-dimensional case, the element stiffness matrix K and the element mass 
matrix M are computed by 
 ( , ) ( , )det ( , ),
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Here, wi and wj are weighting factors at the integration points, t is the element 
thickness and 0 denotes the density. By evaluation of equation (4) the function values 
at the integration points are multiplied. With just one non-zero function value the GLL 
interpolation points demonstrate their main advantage. Compared to the fully 
populated mass matrix which results using conventional Gauss integration points, the 
GLL integration points provide a diagonalised mass matrix. 

 
Time integration 
 

The existence of a diagonal mass matrix in SFE analysis may be advantageous 
for the time integration. Regardless of the integration scheme under consideration, 
the equation of motion reads after discretisation of the time Keff ut+t = Feff. 
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In implicit time integration schemes, e.g. the Newmark method, the effective 
stiffness matrix Keff depends on the stiffness, damping and mass matrices K, D and 
M. However, in explicit time integration schemes, the effective stiffness matrix Keff 
solely depends on the mass and damping matrices: 
 exp

2 2eff t t
 
 
M D

K  (5)

Under the assumption of Rayleigh damping one obtains D = 0M + 1K. Thus,  
1 = 0 gives a diagonal damping matrix and finally Keff becomes diagonal. This fact 
enables a more efficient integration in time than using an implicit time integration 
scheme. However, in the analysis of wave propagation special care has to be taken in 
a proper choice of the time step t. In the following, all numerical calculations are 
performed without damping (0 = 0). 
 

 
NUMERICAL CALCULATION 

 
Beforehand, the correctness of spectral finite elements assembled in an existing 

program code is validated by means of [4] to which reference is made. 
 

Numerical Model of a 7-ply composite 
 

 
Figure 1. Model of the 7-ply laminate for the numerical simulation [mm]. 

 
In this study, the wave propagation in a quasi-isotropic 7-ply composite with 

dimensions shown in Figure 1 is investigated using spectral finite elements. The first 
(top) and seventh (bottom) laminas are 2/2 twill weaves (woven fabrics), the central 
layer is a plane weave and the other ones are unidirectional (UD) fibre-reinforced 
layers. The stacking sequence of this laminate is [0/+45/-45/0/-45/+45/0]. Material 
properties and thickness of each layer are listed in Table 1. These parameters are 
experimentally determined. 

 
Table 1. Material properties and thickness. 

 
 
The symmetric (S0), resp. antisymmetric (A0), mode is excited by two same, resp. 

opposite, orientated single loads at the top and bottom surface of the plate (distance 
between axis of symmetry and excitation point: 2.5 mm). The laminate is discretised 
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by 100 elements in length and one element in height per layer. Each element consists 
of 73 nodes. 

 
Phase velocity in the intact 7-ply composite 

 
A first investigation attends to the phase velocity in the intact 7-ply laminate. 

Therefore, the structure is excited by a time harmonic signal with a frequency of 25 
kHz. The computed wave lengths amount to sym  225 mm, resp. anti  26 mm and 
lead to the phase velocities at about cp,sym  5500 m/s, resp. cp,anti  680 m/s, shown in 
Figure 2. Herein, crosses mark the velocities calculated with spectral finite elements 
(SFEM), circles denote experimentally determined velocities and the solid lines sign 
the calculated dilatational (Fig. 2 a) and flexural (Fig. 2 b) wave velocity using the 
classical laminate theory (CLT), cf. [5]. 

a)     b)  
Figure 2. Phase velocity of the a) symmetric and b) antisymmetric Lamb wave mode at different 
propagation angles. 

 
The typical circular wave propagation of the S0-mode in quasi-isotropic materials 

is in evidence in Figure 2 a). The phase velocity computed using SFE shows a very 
good agreement with the experimentally determined velocity as well as the calculated 
velocity when using the CLT for all investigated propagation angles. A maximum 
deviation of 2 per cent between numerical (SFEM) and experimental results is 
obtained. 

In Figure 2 b) SFEM- and CLT- results coincide moderately well with the 
experimentally determined velocities. Here, the maximum deviation amounts to 
acceptable 7 per cent. The diagonally distorted propagation shape is a consequence of 
the varying moments of inertia of the single UD- layers (+45°/-45°). 

 
Wave propagation in 7-ply composite with delamination 

 
A delamination of 100 mm is implemented between two layers for the analysis of 

wave propagation in a damaged composite (see Fig. 1). The delamination is realised 
by unjoined nodes at both involved layer surfaces seen in Figure 3. The gap just 
demonstrates the node-element connection and is non-existent in the numerical model. 
A transient Hanning windowed five cycle sine burst at a frequency of 200 kHz is 
initiated. The wave lengths of the S0- and A0-waves (sym  28 mm and anti  6 mm) 
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are considerably shorter than the delamination and let expect a good interaction with 
it. The displacements are observed at point P (a = 125 mm), see Figure 1. 

 
Figure 3. Delamination realised by node separation. 

 
The displacements in the primary oscillation direction of each mode are plotted in 

Figure 4 and 5, being in-plane (ux) for S0 and out-of-plane (uy) for A0. The upper 
graph in both figures shows the temporal plot of an intact plate, the second and third 
curve presents the temporal plot of the plate with a delamination between layer 1 and 
2, resp. 3 and 4. 

 

 
Figure 4. In-plane displacements ux of S0-mode plotted over time at point P. 

 

 
Figure 5. Out-of-plane displacements uy of A0-mode plotted over time at point P. 
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The incident wave (area A) passes the beginning of the delamination without 
mentionable reflections. Significant oscillations occur when the wave packet is 
travelling across the end of the delamination, as also noted in reference [6]. These 
reflections are visible in area B. The amplitudes in area C show these reflections after 
another reflection at the left end of the plate. Area D illustrates the main wave group 
reflected at the right edge of the composite plate. 

The bottom S0 displacement curve in Figure 4 shows very small amplitudes in 
areas B and C compared to the middle displacement curve with delamination between 
first and second layer. This is due to the nearly centrally arranged position of the 
delamination in height (between third and fourth layer), since shear forces of the S0-
mode becomes zero in the mid-plane of a symmetric geometrical set-up. Therefore, 
the position-independent A0-waves (see oscillations in areas B and C of bottom 
displacement curve in Figure 5) are more suitable for the detection of delaminations. 

 
Modelling of delamination using node separation or contact elements (ANSYS) 

 
In this section, the prior calculated displacement curves of a delaminated 

composite originated by separated nodes in the damaged region are compared with 
numerical computations using conventional finite elements (FE) with integrated 
contact elements. 

 
Figure 6. Comparison of in-plane displacements ux of S0-mode calculated with SFE (solid grey line) and 
conventional FE (dashed black line). Both numerical models include delaminations by node separation. 

 
First of all to gain a realistic assessment, the SFE-model (with 700 elements and 

7x3 nodes per element) and the FE-model (14000 elements and 8 nodes per element) 
are contrasted. The enlarged plots in Figure 6 show a qualitatively good agreement of 
both models (SFE - solid grey line and FE - dashed black line) which is underlined by 
a normalised amplitude error (amounts to 10 per cent) and a more significant 
normalised phase error (less than 1 per cent). In this case, the normalised amplitude 
error is the root mean square error (RMSE) of both temporal plots referred to the 
effective value of the FE-computation and the phase error is the arithmetic mean 
scaled by the expected cycle duration (T = 1/frequency = 55 10 sec). 
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Figure 7. Amplitude spectrum (upper plots) of different S0-wave packets (solid grey line - SFE-model; 
dashed black line - FE-model). 

 
Figure 7 shows the in-plane displacement curves of the symmetric wave in the 

“node-separated” SFE-model (solid grey line) and the FE-model with contact 
elements (dashed black line) including the amplitude spectrum of individual wave 
packets. The distinct maxima at approximately 200 kHz in the left and middle plots of 
the amplitude spectrum coincide well for both models. Also the main (230 kHz) and 
side lobe (170 kHz) in the right plot are equally marked. In the case of S0-wave 
propagation the delamination edges do not seem to interact with each other which 
allows a very good approximation by the use of a simplified delamination model 
made up of separated nodes. 

 
Figure 8.  Amplitude spectrum (upper plots) of different A0-wave packets (grey line - SFE-model; black 
line - FE-model). 
 

As shown in Figure 8 the A0- mode is also analysed concerning its temporal plot 
(here out-of-plane displacements) and its frequency spectrum of individual time 
ranges in the contact-model (FE-model: black line) and the “node-separated”-model 
(SFE-model: grey line). In both delamination models the incident wave (encircled 
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wave packet left hand side) and first minimal reflections of the left end of the 
delamination (time interval: 0.18 ms - 0.25 ms) agree very well. However, obviously 
differences are beginning to occur after 0.3 ms. Since the center plot of amplitude 
spectrum of the contact-model (black line) just indicates extremely low frequencies 
the right one shows a significant marked main lobe in the low frequency range. This 
implies that the boundaries of the delamination start to interact with each other after 
the travelling wave passed the right end of the delamination. 

 
 

CONCLUSION 
 
In this paper, the method of spectral finite elements is presented and utilised for 

the computation of wave propagation in an anisotropic 7-layered composite. A high 
conformity between numerically computed, experimentally determined and by the 
classical laminate theory calculated phase velocities at different propagation angles is 
shown using the example of an undamaged composite. 

Furthermore, the wave propagation in the same composite with an artificial 
delamination implemented by separated nodes is investigated. This study shows an 
ideal suitability of A0-waves for the detection of variously (in height) positioned 
delaminations, where reflections from the far delamination end appear anyway. 

Finally, the employed delamination model obtained by node separation is 
compared with a delamination model made up of contact elements. For the 
observation of S0-wave propagation the simplified model exposed to be a very good 
approximation, whereas A0-wave propagation cannot sufficiently be described by the 
delamination model with separated nodes. 
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