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ABSTRACT 
 
Theory of Lamb Wave propagation in plate-like structures have found many 

practical applications in Structural Health Monitoring. However for better 
understanding of complex physical phenomena associated with wave propagation and 
wave interaction with damage numerical simulations are as important as laboratory 
experiments. The paper shows the application of  Cellular Automata technique for 
modeling of  elastic wave propagation. After a brief introduction to Lamb waves, 2-D 
triangular Cellular Automata approach  for wave propagation is presented. Numerical 
simulations are performed for undamaged and damaged aluminium plates. The results 
are compared with the Local Interaction Simulation Approach (LISA).  

 
INTRODUCTION 

 
Monitoring for structural damage is important  in maintenance of many 

engineering structures. Various damage detection techniques have been developed for 
Structural Health Monitoring (SHM) applications. Methods based on guided waves 
are particularly attractive in plate-like structures. It appears that Lamb waves are the 
most widely used guided ultrasonic waves for damage detection in metals and 
composites, as reviewed in [1-3].  Despite numerous laboratory implementation SHM  
application of Lamb waves in real engineering systems remain limited. The 
complexity of physical mechanism associated with these waves is an important factor 
when implementation of  Lamb waves techniques is considered for damage detection. 
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Also, signal features  produced by defects tend to be embedded in the background  
noise associated with material, structural and environmental variability  and thus are 
difficult to detect reliably. It is widely acknowledged that numerical simulations can 
help with the entire damage detection implementation process and interpretation 
analysis, leading to accurate SHM diagnosis and prognosis.   

Various methods have been developed for modelling and numerical simulations of 
elastic wave propagation, including semi-analytic techniques (e.g. methods  based on 
the theory of diffraction, boundary element methods) and numerical algorithms such 
as methods based finite differences, finite elements, spectral elements, elastodynamic 
finite integration techniques (EFIT) or local interaction simulation approach (LISA), 
as reviewed in [4] . The LISA is particularly attractive for very fast parallel 
computation of large models of wave propagation in complex media with sharp 
interfaces [5]. More recently the Cellular Automata (CA) approach based on 
rectangular [6] and triangular [7] . The latter offers arbitrary meshing geometries and 
is an attractive alternative finite difference based methods.  

The major objective of the paper is to explore the  CA approach for Lamb wave 
propagation in metallic structures. A 2-D case study of wave propagation in 
undamaged and damaged aluminium plates is investigated. Numerical results are 
compared with simulations based on the LISA technique. 

 
LAMB WAVES 

 
Lamb waves are elastic perturbations propagating in solid plates with free 

boundaries. These waves arise from coupling of shear and longitudinal waves 
reflected at the top and bottom surfaces of the plate, leading to an infinite number of 
dispersive modes. The wave propagation problem can be analysed using the classical 
elastodynamic wave equation  

 

    (1) 
 

where where  and  are Lamé constants,  ρ is the material density and W  is the 
vector of particle displacements. This equation can be solved  using the displacement 
potential approach or the partial wave technique, as demonstrated in [8]. The former 
decoupled the elastodynamic wave equations leading to the well known Rayleigh-
Lamb frequency relations  
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for symmetric Sn (n=0,1,2,...)  modes 
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for antisymmetric An (n=0,1,2, ...)  modes, where k is the wave number and variables p 
and q can be defined in terms of circular frequency ω = 2πf  and the shear cT and 
longitudinal cL wave velocities as 
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                     (4) 
 

The fundamental S0 and A0 modes will only propagate in the plate for small values of 
the frequency-and-plate-thickness" product. The elastodynamic and Rayleigh-Lamb 
equations can be solved numerically to obtain physical displacements and phase/group 
velocities as a function of the frequency-and-plate-thickness" product , respectively.  
 
CELLULAR AUTOMATA 

 
Cellular Automata (CA) were introduced in the early 1940’s and developed 

further  in the following years by John von Neumann to model self-replicating 
systems [9]. At the same time Stanislaw Ulam started his work for Los Alamos 
Scientific Laboratory and began research related to biology [10]. Both scientists 
shared their experiences and built the base of the CA theory. Following these 
development the potential of the method for modelling complex physical phenomena 
has been recognised. Stephen Wolfram made a detailed study of CA and proposed 
their classification [11]. 

CA are mathematical idealisations of physical systems and introduce discretisation 
of time and space. CA consist of cells array in D-dimension. Every cell has set of 
states. These states are usually the same for all cells. The state of i-cell at a time step 
t+1 is determined by a rules function R. Set of rules utilize i-cell neighbours’ state and 
its own state, i.e.  

 
)})(({)1( tsRts ji  , )(iNj  (5) 

 
where R is a function containing set of rules, si is the i cell’s state in the next step, 
t is the time step, sji the neighbours’ state in the previous step and N(i) is the  
neighbourhood of the i cell.  

 

 
Figure 1. Neighbourhood structures in two-dimensional CA with comparison between classical 
rectangular automata (left) and triangular automata for arbitrary geometries (right) [12]. 
 

Two different types of cells are used in practice. Figure 1 shows neighbourhood 
types examples  for rectangular and triangular CA. In these examples the dark cell in 
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the middle of such structures is the i-cell from Equation (5) and can be described 
using the Cartesian coordinates pair (x, y)  according to considered 2-D space. 

CA are an efficient tool for dynamic physical systems simulations because of 
possibility of parallel computation. Numerical implementation of CA for mechanical 
phenomena simulation are different in comparison to methods based on finite 
elements that involve partial differential equation. In CA applications the global 
behaviour of physical system is determined by a local interaction between cells based 
on a specified rule set. Figure 2 shows how strains from neighbours acting on a 
particular cell can be calculated for the 2-D problem. These strains are used for 
specific rule functions introduced in Equation (5). 

 
 

 

 

Figure 2. Strains needed to establish a rule set for CA [12]. 
 

 
LAMB WAVE PROPAGATION MODEL 
 

CA were used to model Lamb wave propagation.  A rectangular  (400 x 150 mm; 
2 mm thickness)  aluminium plate (Young's modulus E = 71 GPa, Poisson ratio ν = 
0.338 and density  ρ = 2711 kg/m3) was used in this model. Both damaged and 
undamaged cases were investigated. A circular hole (diameter equal to 4  mm), 
located in the middle of the plate, was considered as a simulated damage.  Figure 3 
illustrates the geometry of the considered model. The excitation and response 
positions were selected at the top (x=200 mm and y = 5 mm) and bottom (x = 200 mm 
and y = 145 mm) of the plate respectively.   
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Figure 3. Aluminium specimen used for CA Lamb wave propagation modelling.  

 
Parallel implementation of triangular CA - proposed and described in [12] - was 

used in these investigations. This implementation is based an object oriented code 
written in Java.  The Java-based  numerical simulation platform used allows for elastic 
wave propagation simulations. The geometry of the plate was modelled using a  set of 
triangular cells obtained as a finite element mesh from the commercial COMSOL 
multiphysics software package. Figure 4 illustrates the mesh fragment for the plate 
with a circular defect. The meshes for the undamaged and  damaged plates contained 
approximately 30 000 cells. The discretisation used was equal to 1e7 steps per second. 

 
 
 

 
 

Figure 4. Mesh fragment for the plate with a circular defect. 
 
 

A five-cycle - shifted by 900 sine burst signal with a Hann window envelope, as 
shown in Figure 5 - was used for excitation.  Although in theory a minimum two 
Lamb wave modes propagate in plates, it is always possible to select excitation 
frequency for which the amplitude of one fundamental modes is reduced almost to 
zero. This so-called single mode excitation was used in the current 2-D investigations. 
The excitation frequency - selected experimentally - was equal to 100 kHz. This led to 
A0 Lamb wave mode propagation.  
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Figure 5. Excitation signal used for Lamb wave propagation modelling. 
 
 
RESULTS AND DISCUSSION 
 

Once the model of the undamaged and damaged aluminium plate implemented 
CA were used to simulated Lamb wave propagation. The simulation results for the 
(x,y) plane are presented in Figures was developed Figure 6.   
 

(a)  

 
(b)  

 
(c)  

 
 

Figure 6. CA Lamb wave propagation simulated for the undamaged (left column) and damaged (right 
column) plate for various time snapshots.  
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Here, the normalised displacement amplitude is given for various time moments. 
The results - given for the undamaged plate in the left column and for the damaged 
plate in the right column - display expected wave propagation features. The incident 
wave is clearly broken after it passes through the hole (Figure 6a - right column and 
attenuated when it reaches the bottom of the plate (Figure 6b - right column. 
Numerous reflections from plate edges can be observed in Figure 6c for both cases 
investigated.  

The same results but obtained for the LISA method [123] - shown in Figure 7 - 
display very similar wave propagation phenomena and wave interaction with damage 
features. Direct comparison of Lamb wave responses can be analysed in Figure 8. The 
CA and LISA results for the incident wave are almost identical for both cases 
investigated. However, wave reflection components simulated by the CA approach 
appear to be delayed if compared with the LISA approach. This is probably due to 
different meshing geometry used in the relevant models. The amplitude of the incident 
wave for the damaged plate is reduced in Figure 7b, as expected.  

 
 

 
(a)  

 
(b)  

 
(c)  

 
 

Figure 7. LISA Lamb wave propagation simulated for the undamaged (left column) and damaged (right 
column) plate for various time snapshots.  
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(a) 

 
(b) 

 
 

Figure 8. Lamb wave responses obtained for CA and LISA simulations: ( a) undamaged plate; (b) 
damaged plate. 

 
 

CONCLUSIONS 
 
Cellular Automata were explored  to simulate Lamb wave propagation in 

undamaged and damaged aluminium plates. A simple single-mode propagation was 
considered. The results were compared with the LISA method.  

Wave propagation phenomena and damage features in Lamb wave responses were 
identical for both methods when compared visually. The amplitude and arrival time 
for the incident wave component were almost identical. However, some increased 
arrival times for reflected components could be observed for CA simulations if 
compared with the LISA results.  These discrepancies - probably due to different 
meshing - need further investigations. 

Nevertheless, these preliminary results are very promising. The ability of 
triangular CA to model Lamb wave propagation in arbitrary geometries has been 
demonstrated.  
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