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ABSTRACT

This method defines a loading basis for plate structures which is identified from strain
measurements, in order to reconstruct the mechanical fields. This loading basis is
given by a decomposition of the global structure into simple sub-structures associ-
ated with the loaded boundaries only. Some elementary basis are defined for each
substructure depending on their local edge effects. A global basis is then obtained by
the equilibrium of the complete structure. The main advantage of this approach is to
classify the basis vectors depending on their influence on the overall response of the
structure.

INTRODUCTION

Improving structural performances requires monitoring the mechanical fields present
inside the structures and the boundary conditions. Assuming here that the loading
zones are not overstressed, overall information about the whole structure are therefore
preferred to detailed information about specific small zones. This approach focuses
mainly on the overall responses of the structures associated with the boundary condi-
tions. Full-field identification methods have been widely studied for the last ten years
in order to improve the control and the performances of stand-alone structures. Var-
ious methods have been implemented in the context of both dynamic and static field
reconstructions. The dynamic approaches have consisted in identifying modal shapes
from strain measurements [3, 6]. The static approaches have consisted in identifying
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finite element fields from strain and displacement measurements [7, 8]. The main
limitation of these methods is the mismatch between the degrees of freedom used
to approximate mechanical fields and the few number of measurements available in
practical applications. Hundred of thousands of parameters are required to accurately
approximate mechanical fields, whereas only a few sensors are available, which re-
sults in an ill-posed inverse problem, [4]. Since the boundary conditions are used to
regularize parameter identification problems on the basis of full-field measurements
[1], it was proposed to first identify the boundary conditions and then to reconstruct
the mechanical fields. In addition, only internal fields are studied, and the corre-
sponding boundary conditions are therefore approximated with just a few parameters
based on Saint-Venant’s principle. These parameters can therefore be identified with
a limited amount of measurements, which regularizes the inverse problem associated
with the full-field reconstruction problem.

In this paper, the formulation associated with structural monitoring is first tackled
and the resolution with a finite element method is proposed for plate structures. The
main issue is then to find the proper loading basis, which accurately approximates
the real loading conditions. This basis is obtained by the projection of Trefftz-like
analytical solutions of the plate problem onto the boundaries of the structures. Lastly,
a decomposition of plate structures is used to define a global loading basis. With this
method, the loading functions are organized in increasing local edge effects which
simplifies the choice of these functions for monitoring the overall responses of the
structures.

INVERSE PROLEM FORMULATION

The aim here is to determine mechanical fields and boundary conditions based on
strain measurements. Let us take a structure Ω subjected to unknown loading con-
ditions, Fb onto the boundary ∂Ω. At this point, we take the boundary conditions to
be loads only, the displacement boundary conditions, ub relates to the rigid body mo-
tion (RBM) only and Fb is necessarily balanced. This assumption, which is required
because no displacement measurements are available, makes it possible to avoid the
uncertainties about the joints between the structure and the environment. Strain mea-
surements, εm, are performed on ∂Ωm ⊂ ∂Ω and the effects of the body force and the
inertia are neglected. Summarizing the inverse problem in equation form gives:

To find (u,ε,σ,Fb) such that:

Mechanical equations:


div [σ] = 0 in Ω

σ ·n = Fb in ∂ΩF

u = ub in ∂Ωu

σ = Cε in Ω

Observation equation:ε = argminφ(ε− εm) in ∂Ωm ⊂ ∂Ω

(1)

This inverse problem is ill-posed, [4], because many parameters, DoFs ≈ 106, have
to be identified based on a few measurements ≈ 20. Based on the classification of
inverse problem in [5], we decided to define a regularized inverse problem with only
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a few parameters. Improving the structural performances involves monitoring the
internal fields, which mostly depend on the overall effects of the loading conditions,
as shown by Saint-Venant’s principle. The internal fields can therefore be properly
reconstructed using some approximate loading conditions such that the overall effects
of these approximate and real loading conditions are similar. It is now proposed
to identify the loading conditions, F̄b and then to reconstruct the mechanical fields,
(ū, ε̄, σ̄) in Ω. The inverse problem is now reduced to:

To find (ū, ε̄, σ̄, F̄b, ūb) such that:

Mechanical equations:


div [σ̄] = 0 in Ω

σ̄ ·n = F̄b in ∂ΩF

ū = ūb in ∂Ωu

σ̄ = Cε̄ in Ω

Observation equation: F̄b = argmin
[
‖ε̄(F̄b)− εm‖2] in ∂Ωm ⊂ ∂Ω

(2)

This problem is then solved with the finite element method. Displacement field
u is approximated by ū(X) = ∑Φi (X)Ūi. The strain field is determined from the
strain-displacement relation and the stress field is calculated using the constitutive
laws. The loading conditions, Fb, are approximated by a q−dimension basis, giv-
ing F̄b = ∑

q
i=0 fiF i

b where fi are the unknown loading parameters and F i
b are some

loading functions defined onto the boundary ∂Ω. Using the gradient operator B and
the projector into ∂Ωm, Πm, the discretization of the mechanical equations gives the
following expression:

To find (Ū , ε̄, σ̄, F̄) such that:

Observation equation: F̄ = arg min
F∈Rq
‖BπmU(F)− εm‖2

⇔ F̄ = arg min
F∈Rq
‖BπmK−1AF− εm‖2

Mechanical equations:


ε̄ = BŪ
σ̄ = Cε̄

KŪ = AF̄ ⇔ Ū =K−1AF̄

(3)

where K is the stiffness matrix of the structure, Ū = T [u1,u2, · · · ,un] is the nodal dis-
placement vector and F̄ = T [ f1, f2, · · · , fq−1, fq

]
is the loading parameter vector. The

A matrix is the projection operator associated with each elementary loading function.
Lastly, the structural behavior is assumed to be linear, and the observation equation
can therefore be directly solved in the least-squares sense with :

F̄ =
(TG ·G

)−1 · TG · εm (4)

The main advantage of this method is that it avoids the instability occurring when
increasing the FE degrees of freedom (DoFs). The identification procedure depends
only on the number of loading parameters. The number of DoFs involved in the FE
model used to approximate the mechanical fields can therefore be as large as required
to ensure the accuracy of the FE model. In addition, as the displacement boundary
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conditions are fixed (RBM), these mechanical fields can be computed directly, using
a linear combination of precomputed solutions associated with each of the vectors in
the loading basis.

PLATE STRUCTURES under TENSION LOADS

Construction of the loading basis for plates
A basis focusing on the overall response of the structure was constructed to approx-
imate the loading conditions. This construction was based on the Trefftz-like solu-
tions developed in [9, 2] by approximating the displacement field with polynomial
functions satisfying the equilibrium equation. The basis of the loading conditions
was obtained from the projections of these Trefftz-like solutions onto the boundaries
of the structure. The main advantage of this method is that the approximate dis-
placement fields are a complete set of solutions for a given polynomial order. The
projections of these solutions are therefore a complete set of loading conditions the
polynomial orders of which are associated with increasing edge effects. Low poly-
nomial orders were therefore used to limit these edge effects in order to focus on the
overall response of the structure alone. The corresponding q−order set of loading
conditions is defined as follows:

F q = {Fr = σ(ūr) ·n∂Ω ; ūr ∈Uq}

with Uq =

{
ūr =

r

∑
j=0

α jrx jyr− j ; 0 < r ≤ q & div [Cε(ūr)] = 0 in Ω

}
and Ω is a star-shaped domain

(5)

The vectors of this loading basis are then orthonormalized using the Gram-Schmidt
algorithm in the sense of strain energy. The orthonormalized basis F q

⊥ is obtained
by:

F q
⊥ =

{
Fr
⊥ ∈ F q ; ∀ k < r

∫
Ω

Tr
[
σ(Fr

⊥)ε

(
Fk
⊥

)]
dΩ = 0 &∫

Ω

Tr [σ(Fr
⊥)ε(Fr

⊥)]dΩ = 1
} (6)

Extension to the plate structures
At this point the main limitation of the proposed method is the restriction of the load-
ing basis to star-shape domain only. A first extension of this basis is obtained for
structures with inside stress concentration such as holes or notches. This extension
is presented in [10]. We propose now an extension of the loading basis for plate
structures under tension loads. This extension consists in substructuring the com-
plete structure into elementary structures which are associated with the boundaries
having unknown loads. Trefftz-like loading bases are then defined for each of these
substructures and the global equilibrium of the complete structure is used to define a
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global loading basis. Figure 1 illustrates the definition of these substructures in the
case of three boundaries with unknown loads, ∂Ω1, ∂Ω2 and ∂Ω3 of the structure Ω.
Noting Fi the unknown loading condition of the boundary ∂Ωi and

(
Fk

bi

)
1≤k≤pi

the
loading basis of the substructure Ωi, the global equilibrium of the complete structure
is expressed by :

r

∑
i=1

pi

∑
k=1

α
i
kFk

bi = 0

r

∑
i=1

pi

∑
k=1

α
i
k OP∧Fk

bi = 0
⇔H ·F = 0 (7)

The loading basis F T
⊥ of the complete structure is then defined by the kernel of H

and orthonormalized with respect to the strain energy :

F T
⊥ =

{
Fr
⊥ ∈ KerH ; ∀ k < r

∫
Ω

Tr
[
σ(Fr

⊥)ε

(
Fk
⊥

)]
dΩ = 0 &∫

Ω

Tr [σ(Fr
⊥)ε(Fr

⊥)]dΩ = 1
} (8)

Figure 1: Illustration of the complete plate structure Ω and of the substructures Ω1, Ω2 and
Ω3 respectively associated with the boundaries ∂Ω1 ∂Ω2 and ∂Ω3 having unknown loads.

Application to a L−structure
Let’s consider the L−structure Ω. The top edge is fully clamped and two edges on
the left are linearly loaded as illustrated in figure 2. These two displacements and
loading conditions are supposed to be unknown and associated with the unknown
loads F1 and F2, and the two substructures Ω1 and Ω2 are defined by the correspond-
ing boundaries as shown in figure 2. The loading basis of the complete structure
is obtained by the two Trefftz-like bases of each substructure. The sensitivity of
the reconstructed fields to error measurements is then studied depending on the sen-
sor locations. The dimension of the global loading basis is 14 and 5 sensors are only
needed to identify the loading parameters. Figure 3 shows the distribution of the error
of the reconstructed solutions without noise. We observe that the error is minimum
in the structure and also at the unloaded boundaries. These results show the advan-
tage of the proposed loading basis that localizes the uncertainties of the model at the
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Figure 2: Illustration of the L− structure Ω with its loading conditions and illustration of the
elementary substructures associated with the boundaries ∂Ω1 and ∂Ω2 having unknown loads
F1 and F2.

Figure 3: Distributions of the error of the reconstructed solutions with different observation
distances and using unnoisy measurements. The green circles show the sensor locations in
each substructure Ω1 and Ω2.

boundaries with unknown loads only. At the opposite, the " inside" mechanical fields
are accurately reconstructed. This result also gives an optimal observation distance
depending on the error threshold that is similar to the one-plate case. Lastly, figure 4
shows the distribution of the standard deviation ratio τST D with different observation
distances. The proposed loading basis is therefore a proper approximating basis for
the loading conditions because the errors of the reconstructed fields are equivalent to
the measurement errors in the structure and the maximum errors are localized at the
loaded boundaries.

Figure 4: Distributions of the standard deviation ratio τST D of the reconstructed solutions
with different observation distances and using noisy measurements. The green circles show
the sensor locations in each substructure Ω1 and Ω2.
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CONCLUSION and PROSPECTS

In this paper, we showed that the full-field reconstruction could be reduced to a load
identification problem, which regularizes this initial issue. Those unknown loads are
described with just a few parameters in comparison with the unknown mechanical
fields because overall information about the structure are required for structural mon-
itoring purposes such as command and performances. We then proposed a method
for defining a loading basis for plates and plate structures in order to reconstruct the
mechanical fields from the loading parameters identification. This loading basis is
associated with the overall response of the structure based on analytical Trefftz-like
solution. Overall information is accurately recovered in the structure because the
effects of the measurement errors are localized at the boundaries with the unknown
loads. Lastly, further work is required in order to precisely estimate the absolute er-
rors of the solutions. This definition will help to optimize the sensor locations, which
is also a major issue when the available measurement information is limited like in
structural monitoring.
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