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ABSTRACT 
 
This paper proposes a statistical approach for identifying crack in structure using 

strain measurements and Bayesian inference, in which uncertainties from modeling 
error and measurement noise are explicitly included. The Bayesian approach is a 
model-based method, the crack is first represented by a set of parameters, i.e., 
coordinates of the two endpoints of the crack. An array of strain sensors is mounted on 
the structure to gather strain measurements under a known static loading. A forward 
model based on extended finite element method (XFEM) characterizing the strain 
responses of the structure with crack is incorporated in the identification procedure. By 
combining the measurement data and the prior information, Bayes’ Theorem is used to 
update the probability distributions of the parameters of crack. A Markov chain Monte 
Carlo (MCMC) algorithm is employed for sampling the parameters’ posterior 
distributions. Numerical study is conducted to demonstrate the effectiveness of the 
proposed method.  

 
 

INTRODUCTION 
 
The increasing emphasis on integrity of critical structures such as aircrafts, civil 

infrastructures, nuclear reactors, pressure vessels, etc., urges the needs to monitor 
structures in-situ and real-time to detect damages at an early stage to prevent 
catastrophic failure. With the advances in the area of smart materials and structures, it is 
possible to develop structural health monitoring (SHM) technologies that can be 
integrated into the structures as a built-in diagnosis system [1]. 
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Mathematically speaking, determination of the physical conditions of a structure 
based on the sensor signals is a nonlinear inverse problem. A lot of methods have been 
proposed to solve this kind of inverse problems, most of which are deterministic 
approaches [2]. In practice, uncertainties from modeling error, measurement noise, and 
other sources always cause troubles in solving inverse problems. Under such a 
circumstance, statistical approaches may be more appropriate than deterministic 
approaches in that probability distributions can be used to quantify the various 
uncertainties. In particular, the Bayesian statistical framework in which measurement 
data can be used to update the belief in the identification results, has previously been 
established and applied to structural systems by Beck and his colleagues [3-5]. One 
outstanding advantage of the Bayesian approach is that engineering judgments or 
expert knowledge can be easily incorporated into the analysis as prior information to 
reduce the uncertainties. Rather than pinpointing a single solution using deterministic 
approaches, the Bayesian approach can provide the probability density function (PDF) 
of the system parameters, giving both point and interval estimates [6-8]. 

The aim of this work is to provide a statistical Bayesian approach to identify crack 
in structure using strain measurements while considering uncertainties from modeling 
error and measurement noise. The paper is structured as follows. First, the Bayesian 
approach to crack identification is described. Then, a brief introduction of extended 
finite element (XFEM) and Markov chain Monte Carlo (MCMC) method and their 
application in this study is presented. In addition, numerical study is conducted to 
demonstrate the effectiveness of the proposed method. Finally, concluding remarks are 
given. 
 
 
BAYESIAN APPROACH TO CRACK IDENTIFICATION 

 
The chief idea of the Bayesian statistical identification framework is that it treats 

the system parameters, usually denoted by a vector θ , as random variables with joint 
distribution ( )p θ . In contrast to the deterministic identification approaches, this 
statistical approach aims to calculate the posterior (updated) distributions of the 
uncertain system parameters for a given set of measurement data. The final parameter 
estimate can be taken as the mean value of the posterior or use the value that maximizes 
the posterior distribution.  

Consider a structure with one straight crack. The crack can be represented by the 
parameter vector as 1 1 2 2[ , , , ]Tx y x yθ , in which 1 1( , )x y  and 2 2( , )x y  are the 

coordinates of the crack’s two endpoints. An array of strain sensors are deployed on the 
structure to measure the strain responses under a given static loading to provide 
measurement data { ( , ), 1, 2, , }m

i i i ox y i N D  , in which ( , )m
i i ix y  is the measured 

strain at location ( , )i ix y , oN  is the number of sensors. Assume the modeling 

uncertainty and measurement uncertainty are both Gaussian type, the probabilistic 
description of the measured strain at a specific sensor location can be expressed as 

( , )m c
i i f iM e  θ                                                 (1) 

where c
i  is the noise-free strain response calculated from a forward model 

fM describing the static characters of a cracked structure subject to a known static 
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loading and crack parameter θ , ie  is a Gaussian error. In this case, the likelihood 

function can be written as 
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where 2
  is the variance and assumption is made that the uncertainties from different 

sensors have the same variance across all sensors and they are uncorrelated. The 
likelihood function 2( | , )p D θ  is a probabilistic statement about the distribution of 

the measurement data D  given a forward model fM  and crack parameter θ . In this 

study, the forward model fM  is given before crack identification, and model selection 

is not considered. For convenience, the sum of squares in the likelihood in equations (2) 
can be defined as 

2
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Using Bayes’ Theorem, the posterior PDF of the parameters for a given set of 
measurement data is constructed by relating the prior PDF and the likelihood function 
as 

2 2
2 ( | , ) ( , )

( , | )
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where 2( , | )p θ D  is the joint posterior distribution of θ  and 2
 , 2( , )p θ  is the 

joint prior distribution of θ  and 2
 , and  

2 2 2( ) ( | , ) ( , )p p p d d      D D θ θ θ                               (5) 

is a normalizing constant that ensure the integration of the PDF over the predefined 
domain is equal to unity. For each of the parameter j  in θ , the marginal posterior 

distribution can be obtained by integrating equation (5) with respect to the rest 
parameters and variance 2

  over the domain of interest as 
2 2 2 2( | ) ( , | ) ( | , ) ( )j j jp p d d p p d d           D θ D θ D θ θ θ         (6) 

where the notation 2
jd d  θ  denotes the multidimensional integral over 2

  and all 

the rest parameters other than j  in θ . 

Equation (6) gives a general expression of the updated marginal PDF for each 
parameter of the crack using measured strain responses. However, evaluation of 
equation (6) is usually difficult since it involves integration over multi-dimensional 
parameters. In this study, MCMC method is employed for drawing the posterior 
distributions for the parameters of the crack. 

 
 

XFEM FOR CRACK MODELLING  
   
 Originally, the XFEM algorithm was developed to enable the modelling of crack 

growth without remeshing [9,10]. In order to incorporate stress and displacement fields 
which are discontinuous across the crack, the mesh in traditional formulations of the 
finite element method had to be adapted so that the crack coincided with the element 

3



edges. In contrast, the XFEM algorithm allows for the crack to pass arbitrarily though 
elements by incorporating enrichment functions to handle the field discontinuities. In 
this manner, the mesh can remain fixed throughout the evolution of the crack. In this 
study, as MCMC is employed to solve the Bayesian updating problem, the location and 
size of the crack need to be iteratively updated. Using XFEM to model the crack could 
avoid remeshing the domain during the identification iterations [11]. 

The key idea of XFEM is to locally enrich the standard finite element 
approximation with local partitions of unity enrichment functions which are chosen 
according to the physics of the problem. 

The XFEM approximation hu  of a cracked domain takes the form as [9] 
4

1

( ) ( ) ( ) ( ) ( ) ( , )h l
i i j j k k l

i I j J k K l

N N H N B r 
   

     
 

   u x u x b x x x a       (7) 

where ( )iN x is the shape function associated with node i , J is the set of all nodes 

whose support is bisected by the crack and K  contains all the nodes of the elements 
containing the crack tip as illustrated in figure 1. The nodal degree of freedom 
corresponding to the displacement are iu , jb  and ka . 

The important and distinguishing factor to note in equation is the enrichment 
functions ( )H x  and ( , )lB r  . The Heaviside function ( )H y  is defined as 

1 0
( )

1 0

y
H y

y


  

                                                     (8) 

This implies that the discontinuity occurs at the location of the crack. The branch 
function lB  is defined by  

( ( ), ( )) sin cos sin sin cos sin
2 2 2 2lB r r r r r
        

 
x x       (9) 

where ( , )r   is a polar coordinate system with its origin at the crack tip and 0   
tangent to the crack at its tip. The above functions span the asymptotic crack tip 

solution of elasto-statics, and sin( / 2)r   takes into account the discontinuity across 
the crack face.    
 

 
Figure 1. Sets of nodes selected for enrichment. 
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MARKOV CHAIN MONTE CARLO METHOD 
 
Posterior distributions used in Bayesian inference are often complicated, making it 

difficult to draw independent samples for standard Monte Carlo method. Under such a 
situation, MCMC simulation is usually employed as an alternative choice for sampling. 
The result of MCMC is a dependent sequence of samples (a Markov chain) that has 
stationary distributions equal to the target distribution. 

In this study, a MCMC algorithm for Gaussian likelihood and uniform transition 
distribution developed by Nichols et al. [12] is employed to sample the posterior 
distributions of the crack parameters θ . Compared to standard Metropolis-Hastings 
algorithm, this algorithm combines Gibbs sampling concept that the full conditional 
distribution of each parameter can be thought of as its posterior distribution if other 
parameters’ values are known. It updates each parameter sequentially by using the most 
recent sampled values. Also, in this algorithm, for each parameter, the interval 2L  has 
been continuously tuned during the “burn-in” period to achieve an appropriate 
acceptance rate and improve the performance of MCMC. In addition, it assumes a 
diffuse gamma prior on the precision parameter 21/   which is the case of conditional 

conjugacy, thus the variance 2
  can be directly sampled from an inverse gamma 

distribution. More detailed information about this algorithm can be referred to 
reference [12].  

The proposed MCMC algorithm for generating the posterior parameter 
distributions ( )jp   for 1 1 2 2[ , , , ]Tx y x yθ  given the forward XFEM model fM , the 

measurement data D , and prior parameter distributions ( )jp   are described in 

following steps: 
Step 1  Set number of total iterations TN  and number of “burn-in” iterations BN . 

Step 2  Initialize the chain with iteration number 0i  , initial guesses for parameter 
values (randomly chosen from the priors) (0) (0)jθ  and initial values for 

tuning parameters jL , initial variance sampled from inverse gamma 

distribution 2 (0) ( / 2 1, ( , (0)) / 2)oIG N Q   D θ ，where ( , )IG   is the 

inverse gamma distribution with parameters   and  , and ( , )Q D θ  is the sum 
of squares in the likelihood defined in equation (5). 

Step 3  Increase i  by 1 and for each parameter j  generate a candidate 
* ( 1) 2 ( 1,1)j j ji L U      , 

compute 
* 2

*( ) ( 1)
exp( ( ( , ) ( , ( 1))))

( ( 1)) 2

p i
r Q Q i

p i
 



 
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
θ

D θ D θ
θ

 

 where  
* *

1 1 1( ( ), , ( ), , ( 1), )j j ji i i     θ    and 

1 1 1( 1) ( ( ), , ( ), ( 1), ( 1), )j j ji i i i i       θ   . 

Step 4  Randomly generate a number R  from the uniform distribution (0,1)U , if 

R r , set *( )j ji  , and adjust tuning parameter 1.01j jL L  , else reject 

the new value, keep ( ) ( 1)j ji i   , and adjust tuning parameter 
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/1.07j jL L , directly sample the variance 
2 ( ) ( / 2 1, ( , ( )) / 2)oi IG N Q i   D θ . 

Step 5  After Bi N  iterations, cease adjusting the tuning parameters jL  and run the 

same procedure as Steps 3 and 4, record subsequent values ( )j i  as members of 

stationary Markov chains that can represent the posterior distributions ( )jp  .  

 
 

NUMERICAL EXAMPLE  
 
To illustrate the effectiveness of the proposed method, numerical example for a 

square plate is studied here. The dimensions of the plate is 1×1 (units), and uniform 
distributed tension are applied on both the left and right vertical edges of the plate 
which is under MODE I tension along the horizontal direction as illustrated in figure 2. 
The numerical data came from the forward XFEM model with finer mesh due to lack of 
actual experimental data. The sensor locations are labeled as ‘⊕’in figure 2. For 
considering the measurement error, zero-mean Gaussian white noises are added to the 
numerical data as (1 )m XFEM

i i    , where XFEM
i  are the strain data calculated from 

the forward XFEM model, and   is a Gaussian variable with zero mean and standard 
deviation s [8]. 

 

 
Figure 2. Mesh generation, crack orientation and sensor placement in numerical example. 

       
With simulated measurement data and assumed uniform priors, the proposed 

statistical identification approach is implemented to obtain the posterior distributions of 
the parameters about the crack. Figure 3 shows the samples of crack parameters for the 
first and second endpoints by MCMC method when 2%  . For each parameter, 
totally 2000 samples are obtained by MCMC in which the first 500 are set as the 
“burn-in” period. Figure 4 and figure 5 show the histograms formed by the rest 1500 
samples for each parameter from figure 3. Then estimated PDF of distributions for 
coordinates of crack endpoints can be obtained from the histograms, and each 
parameter can be estimated using the values maximizing the PDF. 
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Figure 3. Samples of the coordinates of first endpoint (left) and second endpoint (right) by MCMC. 
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Figure 4. Histograms of identified x-coordinate (left) and y-coordinate (right) for first endpoint. 
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Figure 5. Histograms of identified x-coordinate (left) and y-coordinate (right) for second endpoint. 

 
 

CONCLUSIONS 
 
A statistical Bayesian approach for identifying crack in structure is proposed in this 

study. A forward model based on XFEM characterizing the strain responses of a 
structure with crack is incorporated in the identification procedure. By combining the 
measurement data and the prior information, Bayes’ Theorem is used to update the 
probability distributions of the parameters of crack. A MCMC algorithm is employed 
for sampling the parameters’ posterior distributions. The effectiveness of the proposed 
approach is validated and demonstrated by numerical study. The results have shown 
that, by using MCMC sampling method, the Bayesian approach successfully identified 
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the crack parameters for the nonlinear inverse problem in which uncertainties from 
modeling error and measurement noise are explicitly considered. Rather than 
pinpointing a single solution using deterministic approaches, the Bayesian approach 
provides the probability distribution of the crack parameters, giving a possible 
uncertainty analysis to the estimates.  
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