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ABSTRACT

The problem of vibration-based Fault Detection and Identification (FDI) in inherently
Time-Varying (TV) structures is tackled via a statistical time series type method. This
method is based on Functional Series Time-dependent AutoRegressive (FS-TAR)
models combined with an appropriate statistical decision making scheme. Its per-
formance is experimentally assessed via its application to fault detection and identifi-
cation of a pick-and-place mechanism. The faults considered are of various types and
occurrence locations, while their diagnosis is based solely on a single non-stationary
vibration response signal acquired during normal operation. The method is shown to
achieve effective FDI for all fault scenarios considered.

INTRODUCTION

Structures characterized by properties that vary with time are referred as Time-Varying
(TV), or else non-stationary. Such structures are widely used in a number of applica-
tions and include robotic structures and mechanisms used in assembly lines, flexible
mechanisms and variable geometry structures used in aerospace technology, rotating
machinery, and so on. In a large number of such cases, the structures operate contin-
uously, and their in-operation inspection based on automated decision making is of
critical importance.

In recent years, significant attention has been paid to structural Fault Detection
and Identification (FDI) via vibration based statistical time series methods [1, 2].
These utilize random excitation and/or vibration response signals (time series), along
with statistical model building and decision making tools, for inferring the health
state of a structure. They offer a number of advantages over alternative FDI meth-
ods such as no requirement for physics based or finite element models, no need to
interrupt normal operation, and effective treatment of uncertainties [2].
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Figure 1: The pick-and-place mechanism and the experimental setup: (a) photo, (b)
schematic diagram, and (c) the motor end positions.

The aforementioned advantages make statistical time series FDI methods par-
ticularly attractive for TV structures as well. The development of such a method
is on the focus of the present study. The method introduced employs a single ran-
dom vibration response signal from the structure in its healthy state, as well as from a
number of potential faulty states, obtained during a single operational cycle. For each
structural state a suitable non-stationary Functional Series Time-Dependent AutoRe-
gressive (FS-TAR) model is identified that models the corresponding TV dynamics.
An appropriate statistical quantity (characteristic quantity) is subsequently extracted
which characterizes the structural state in each case (baseline phase). Fault detection
and identification is then accomplished via statistical decision making consisting of
comparing, in a statistical sense, the current characteristic quantity with that of each
potential state as pre-determined in the baseline phase (inspection phase).

The effectiveness of the method is assessed via its application to a TV pick-and-
place mechanism consisting of two linear motors which follow prescribed motion
profiles. A number of test cases (experiments) are considered, each one correspond-
ing to a specific fault scenario (loosening or removing one or more bolts from various
parts of the mechanism or adding small mass on a motor).

THE MECHANISM, THE FAULTS & THE EXPERIMENTAL SET-UP

The structural system employed in the study is a 2-DOF pick-and-place mechanism
consisting of two coaxially aligned linear motors (LinMot P01-37×120) that carry
prismatic links connected to their ends, with the whole mechanism being clamped
on an aluminium base (Fig. 1(a)). The mechanism is suspended through two bungee
cords from a long rigid beam sustained by two heavy-type stands. The excitation
is a zero-mean Gaussian random stationary force which is vertically (with respect
to the base) exerted via an electromechanical shaker (LDS V201) equipped with a
stinger (Figs. 1(a) and (b)). The vertical (with respect to the base) vibration of
the mechanism is measured at six selected locations (locations 1-6; Fig. 1(b)) via
lightweight piezoelectric accelerometers. The FDI results of the present study are

2



Figure 2: The considered fault types (A,B,C,D,E and F ).

Table 1: The fault types, numbers of FDI experiments and signal details.

Structural State Description FDI experiments
Healthy — 40
Fault Type A removal of bolt A1 40
Fault Type B removal of bolt B1 40
Fault Type C removal of bolts C1 and C2 40
Fault Type D loosening of motor B slider 40
Fault Type E loosening of bolt E1 40
Fault Type F adding a mass on motor A slider 40
Analysis bandwidth: 5 – 200 Hz
Sampling frequency: fs = 512 Hz
Signal length: N = 5,120 samples (= 10 s)

based on the non-stationary vibration response measured at location 4 (Fig. 1(b)).
The fault scenarios considered correspond to the loosening or removal of vari-

ous bolts at different points of the mechanism, loosening the slider of motor B, and
adding a mass at the free end of the slider of motor A (Fig. 2). In total, six distinct
fault scenarios (types) are considered and are summarized in Table 1. The assessment
of the statistical time series method with respect to the fault detection and identifi-
cation subproblems is based on 40 experiments for the healthy and 40 experiments
for each considered fault state of the mechanism (fault types A,B, . . . , F – see Table
1). However, an additional experiment with the mechanism under its healthy state
and one for each faulty state (fault types A,B, . . . , F ) are executed and used in the
baseline phase.

During a single experiment the linear motors move from their rightmost to their
leftmost position and back (Fig. 1(c); from A1–B1 to A2–B2 and back to A1–B1) fol-
lowing a sinusoidal reference position profile lasting 10 s. The vibration acceleration
signals are sampled at fs = 512 Hz, each one being 10 s (N = 5,120 samples) long.
The frequency range of interest is selected as 5 – 200 Hz (Table 1).

THE FAULT DETECTION & IDENTIFICATION METHOD

The FDI method consists of two phases: (a) The baseline phase, which includes the
modelling of the TV dynamics of the mechanism based on measured response signals
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and the extraction of an appropriate statistical quantityQ characterizing the structural
state in each case, and (b) the inspection phase that is performed periodically or on
demand during the mechanism’s service cycle. This second phase utilizes the current
vibration response signal – with the mechanism being under its current (unknown)
state – and performs FDI through statistical decision making tests that compare the
current characteristic quantity Qu with that of each potential state as determined in
the baseline phase (Qo for the healthy state, or QA, . . . , QF for the faulty states).

Baseline Phase: Modelling of the TV Dynamics

An FS-TAR(na)[pa,ps] model, with na denoting its AutoRegressive (AR) order, pa and
ps the AR and innovations standard deviation (std) functional basis dimensionalities,
respectively, is of the form:

x[t] +
na∑
i=1

ai[t] · x[t− i] = e[t], e[t] ∼ NID(0, σ2
e [t]), t = 1, . . . , N (1)

with t designating normalized discrete time, x[t] the non-stationary response signal,
and e[t] the corresponding innovations (residual) sequence which is characterized by
zero-mean and time-dependent std σe[t]. NID(·) stands for Normally Independently
Distributed with the indicated mean and variance.

The model parameter ai[t], along with the innovations time-dependent std σe[t],
are considered to belong to specific functional subspaces and may be thus expanded
on respective basis functions as:

ai[t]
∆
=

pa∑
j=1

ai,j ·Gba(j)[t], σe[t]
∆
=

ps∑
j=1

sj ·Gbs(j)[t] (2)

where Gj[t] stands for the j-th basis function and ba(j)(j = 1, ..., pa) and bs(j)(j =
1, ..., ps) designate the functions included in each basis. An FS-TAR model is thus
parameterized in terms of its time-invariant projection coefficients ai,j, sj , while a
specific model structure defined by the AR model order na and the functional sub-
spaces FAR

∆
=
{
Gba(1)[t], ..., Gba(pa)[t]

}
and Fσe

∆
=
{
Gbs(1)[t], ..., Gbs(ps)[t]

}
.

Model parameter estimation.
The estimation of the projection coefficient vector θ = [aT , sT ]T , consisting of

the AR and innovations std coefficient of projection vectors a ∆
= [a1,1 . . . ana,pa ]T and

s
∆
= [s1 . . . sps ]

T , respectively, is based on available non-stationary vibration response
signals and a selected specific model structure.

In the present study the estimation of θ is based on the Multi-Stage (MS) method
[4] which is very briefly presented below.

Stage 1. Initial AR projection coefficient vector estimation via the Ordinary Least
Squares (OLS) estimator:

âOLS =

[
1

N

N∑
ta+1

φ[t] · φT [t]

]−1

·
[

1

N

N∑
ta+1

φ[t] · x[t]

]
(3)

where φ[t]
∆
= [ −Gba(1)[t] · x[t− 1], . . . ,−Gba(pa)[t] · x[t− na] ]T .
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Stage 2. Innovations std projection coefficient vector s estimation by maximizing
the log-likelihood of the FS-TAR model [3] with respect to s:

ŝML = arg min
s

1

N

N∑
ta+1

[
ln
((
gTs [t] · s

)2
)

+
e2[t, âOLS]

(gTs [t] · s)2

]
(4)

where gs[t]
∆
=
[
Gbs(1)[t] Gbs(2)[t] . . . Gbs(ps)[t]

]T . The prediction errors e[t, âOLS]

are obtained by the relation e[t, âOLS] = x[t]−φT [t] · âOLS. Estimation of s based on
Eq. (4) constitutes a nonlinear optimization problem, usually of low dimensionality
ps, that may be tackled via iterative optimization techniques.

Stage 3. Final AR projection coefficient vector estimation via a Weighted Least
Squares (WLS) estimator:

â =

[
1

N

N∑
ta+1

φ[t] · φT [t](
gTs [t] · ŝML)2

]−1

·

[
1

N

N∑
ta+1

φ[t] · x[t](
gTs [t] · ŝML)2

]
(5)

Remark. Stages 2 and 3 are iterated until convergence criteria with respect to the
estimated parameters and the value of a suitable prediction error function (presently
the Residual Sum of Squares RSS =

∑N
t=1 e

2[t, â]), are achieved.

Model structure estimation.
Given a basis function family, model structure estimation refers to the estimation

of the set of integersM = {na, pa, ps, ba(j), bs(j)}. This is tackled via a two-phase
procedure based on backward regression and the minimization of the Bayesian Infor-
mation Criterion (BIC) [3].

Inspection Phase: Fault Detection and Identification

The characteristic quantity Q used for fault detection and identification is the AR
coefficients of projection vector a. For sufficiently long signals, the a MS estimator
is (under mild conditions) Gaussian distributed with mean equal to its true value, say
å, and covariance matrix P , thus a ∼ N (å,P ) [4].

Fault detection is based on testing for statistically significant changes in the pa-
rameter vector a between the nominal and current state of the TV mechanism through
the hypothesis testing problem [2]:

Ho : δa = ao − au = 0 (null hypothesis – healthy mechanism)
H1 : δa = ao − au 6= 0 (alternative hypothesis – faulty mechanism) (6)

where ao and au designate the true coefficient of projection vector for the healthy
and current (being in unknown state), respectively, structural system model. Based
on the normality of the AR parameter vector estimator, the following statistical test
based on the χ2 distribution may be constructed at the α (type I) risk level (false
alarm probability) [2]:

χ2
a = δâT ·δP−1 ·δâ ≤ χ2

1−α(napa) =⇒ H0 is accepted (healthy mechanism)
Else =⇒ H1 is accepted (faulty mechanism)

(7)
with δâ = âo − âu, δP = 2P̂ o, and χ2

1−α(napa) designating the 1 − α critical
point of the χ2 distribution with napa (parameter vector a dimensionality) degrees of
freedom.
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Figure 3: Healthy baseline FS-TAR model structure selection: (a) AR order selection based
on the BIC using an extended and complete functional subspace (pa = ps = 15) – the
selected order is indicated by an arrow; (b) BIC values obtained by sequentially dropping the
indicated basis functions until no further reduction is possible (backward regression).

Table 2: Parameter estimation method implementation details.

OLS MATLAB mldivide function (Householder transformation)

aMS estimation termination rules:
| RSSi−RSSi−1 |
1+ | RSSi−1 |

< 10−8 and
‖ ai−ai−1 ‖
1+ ‖ ai−1 ‖

< 10−8

s ML nonlinear
optimization

MATLAB fminsearch function (Nelder-Mead simplex method),

termination rules:
| (lnL)i−(lnL)i−1 |

1+ | (lnL)i−1 |
< 10−8 and

‖ si−si−1 ‖
1+ ‖ si−1 ‖

< 10−12

lnL: log-likelihood function

Fault identification is similarly based on proper comparison of the parameter vec-
tor au belonging to the current state of the mechanism to each one of aA,aB, . . . ,
aF corresponding to different fault types via statistical hypothesis testing.

FAULT DETECTION & IDENTIFICATION RESULTS

Baseline Phase

FS-TAR modelling of the TV mechanism under the various structural states is presently
considered. A functional basis spanned by the discrete Fourier transform functions:

G0[t] = 1, G2κ−1[t] = cos[2κπ(t− 1)/(N−1)], G2κ[t] = sin[2κπ (t− 1)/(N−1)],

with κ = 1, 2, . . ., and t = 1, . . . , N is adopted, motivated by the periodic nature
of the motion profile. At first an extended and complete functional subspace of di-
mensionality 15 is employed and FS-TAR(na)[15,15] models with na = 10, . . . , 30
are estimated with the AR order being selected based on the BIC (Fig. 3(a)). The
initial functional subspace is subsequently reduced based on the BIC and a backward
regression procedure (Fig. 3(b)). The implementation details for the parameter esti-
mation method are summarized in Table 2, while the model structure details for all
obtained models are summarized in Table 3.

The estimated, based on the healthy baseline model, dynamics are shown in Fig.
4, where the “frozen-time” FS-TAR(21)[3,3] based PSD estimate is contrasted to the
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Table 3: Estimated baseline FS-TAR models: model structure details.

Structural State na ba pa bs ps
Healthy 21 [0 1 3] 3 [0 1 3] 3
Fault Type A 22 [0 1 3] 3 [0 1 3] 3
Fault Type B 22 [0 1 3] 3 [0 3 5] 3
Fault Type C 21 [0 1 3] 3 [0 1 3 5 9 11 12] 7
Fault Type D 22 [0 1 3] 3 [0 1 3] 3
Fault Type E 21 [0 1 3] 3 [0 1 3] 3
Fault Type F 22 [0 1 3] 3 [0 3] 2

(a) (b)

Figure 4: The estimated healthy TV structural dynamics expressed via TV PSD estimates:
(a) FS-TAR based “frozen-time” TV PSD estimate, and (b) sample mean spectrogram ob-
tained from 41 non-stationary experiments.

mean value of the spectrograms obtained from the 41 non-stationary experiments
with the mechanism being under in its healthy state. The agreement between the
FS-TAR based estimate and the mean spectrogram is evident, although the former is
more clear and informative.

Inspection Phase

Fault detection and identification is based on the vibration response of a single ac-
celerometer (Fig. 1 - location 4) along with the FS-TAR(21)[3,3] model identified in
the baseline phase. In addition, corresponding FS-TAR models are identified in each
test case using the current response signal (inspection phase).

Figure 5 presents the fault detection results. The test statistics corresponding to
the healthy mechanism are shown in circles (40 experiments), while the test statis-
tics corresponding to the various fault types are presented with symbols of different
colour (different for each fault type; 40 experiments per fault type). Evidently, cor-
rect detection is obtained in each test case, as the test statistic is shown not to exceed
the critical limit (at the α = 10−8 risk level) in all healthy cases, while it exceeds it
in all faulty cases (note the logarithmic scale on the vertical axis in Fig. 5).

Fault identification is similarly based on the mechanism vibration response of
accelerometer at location 4 and the baseline FS-TAR models identified for each faulty
case. The fault identification results for all 240 test cases (each related to a particular
faulty state) are summarized in Table 4 and indicate correct identification for fault
types A,B,C and D, while a small number of fault missclassifications are obtained
for fault cases E and F .
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Figure 5: Fault detection results for all 280 experiments: A fault is detected if the test statistic
exceeds the critical limit (− − −; risk level α = 10−8).

Table 4: Fault detection and identification summary results.

Fault Detection
False Alarms Missed Faults

Healthy Fault A Fault B Fault C Fault D Fault E Fault F
0/40 0/40 0/40 0/40 0/40 0/40 0/40

Fault Identification (misclassifications)
— Fault A Fault B Fault C Fault D Fault E Fault F
— 0/240 0/240 0/240 0/240 16/240 18/240

CONCLUSIONS

A statistical time series vibration based method for FDI in TV structures was intro-
duced. The method is based on non-stationary FS-TAR models and a proper statisti-
cal decision making scheme utilizing a single vibration response signal acquired from
the structure during its normal operation. The method’s effectiveness was assessed
via its application to the problem of fault detection and identification for a pick-
and-place mechanism consisting of two linear motors that follow prescribed motion
profiles. The considered faults were successfully detected with no false alarms or
missed faults, while correct identification was also achieved in most test cases.
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