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ABSTRACT 
 

A semi-analytical solution for the propagation of guided waves generated by 
external forces and surface tractions due to piezoelectric actuators along a semi- 
infinite strip is presented. The paper proposes the use of the discrete layerwise 
theory for modeling the displacement field through the thickness of the strip and 
uses a double Fourier transform for the solution of the problem in the frequency- 
wavenumber domain. Solutions are first presented for a healthy strip with various 
laminate configurations. Subsequently, solutions for a damaged strip with various 
sizes of a delamination crack are shown and compared with the healthy response, 
in order to have an estimation of the effect of damage on the wave characteristics. 

 
INTRODUCTION 

 
The extensive application of composite materials in aerospace, civil 

engineering, transport and renewable energy structures requires new Structural 
Health Monitoring (SHM) techniques capable of revealing and locating damage in 
composite structures and ensuring their structural sustainment. The generation and 
monitoring of guided Lamb waves using permanently attached piezoelectric wafer 
and/or film actuators and sensors seems to be one of the most encouraging SHM 
methods for the detection, identification and localization of damage in composite 
structures. A critical issue which needs to be resolved is the development of 
modeling tools for the efficient analysis of such complex systems. To this end, this 
paper presents a semi-analytical solution for the wave propagation along a semi- 
infinite strip. 

Early work in the area of guided wave propagation as a technique of damage 
detection was focused on the dispersive behavior of guided waves in laminated 
plates of finite thickness, showing that the dispersive modal propagation behavior 
is strongly influenced by the anisotropic properties of each lamina and the stacking 
sequence used. Nayfeh [7] deals with the general problem of elastic wave 
propagation in multi-layered anisotropic media, obtaining exact analytical 
solutions for the interaction of the harmonic elastic wave with the laminate, using 
the transfer matrix method, whereas Alleyne and Cawley [1] used a 2D Fourier 
transform of the time history of waves and measured the amplitudes and velocities 
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of the Lamb waves propagating in a plate. Pan and Datta [8] studied the guided 
waves and transient response of multilayered superconducting tapes, focusing 
mainly on the dispersion of two-dimensional guided waves. 2D Fourier 
transformations in both time and space were used and results concerning the 
dispersive characteristics of three different cases showed considerable variations. 
Additional Finite Element Analysis was used by Mukdadi and Datta [6] in order to 
study the guided waves in both infinite- and finite-width elastic plates, whereas 
Castaings and Hosten [2] studied the propagation of Lamb-like waves in sandwich 
plates made of anisotropic and viscoelastic material layers using a semi-analytical 
model based on the transfer matrix method.  Crack detection in isotropic structures 
via modeling high-frequency wave propagation was attempted by Coccia et al [3, 
4] in arbitrary cross-section waveguides, where certain modes were selected for 
the detection of surface cracks. Giurgiutiu [5] modeled surface attached 
piezoelectric actuators and sensors to excite and detect tuned Lamb waves for 
structural health monitoring.  

In the rest of this paper, a semi-analytical modeling tool has been developed 
based on a layerwise laminate theory [10], involving an analytical wave solution in 
the plane of the semi-infinite strips. Surface traction excitations are implemented 
in the model, to model external forces or shear tractions due to piezoceramic 
actuators. A two-dimensional Fourier transform is used in order to transform the 
system equations into the frequency-wavenumber domain and the transformed 
solution is obtained. Various damage cases are introduced into the governing 
equations as the degradation of properties in a finite length of the strip. Obtained 
solutions for a healthy baseline model and a model with a delamination crack are 
presented and compared, in order to evaluate the performance of the method and 
to investigate the effect of delamination on the wave characteristics of the strip. 
 
THEORETICAL FORMULATION 

 
The layerwise theory for the wave propagation in semi-infinite composite 

strips is presented in this section. Figure 1 shows a simple baseline case of a 
healthy strip, as well as with a single delamination crack at the mid-span of the 
strip.  

(a) 

(b) 
Figure 1. Composite beam (a) healthy, (b) with a delamination crack placed at the width’s mid-span 

between x1 and x2 points along strip’s length 
 
Kinematic Assumptions 
 

Kinematic hypotheses of a layerwise theory are adopted, admitting in-plane 
and transverse piecewise linear displacement fields through the thickness [10]. The 
laminate is subdivided into N discrete layers, where each discrete-layer may 
contain a single ply, a sub-laminate, or a sub-ply. Linear fields are assumed in 
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each discrete layer for the in-plane field through the laminate thickness. The 
displacement field in the laminate takes the form: 
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where superscripts 1, ,n N1,1, , N, indicate the discrete layers through the thickness 
and nn are the linear interpolation functions through the laminate thickness for the 
nth layer, given by: 
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Equations of Motion 
 

The mechanical equilibrium of the laminated strip is represented by the stress 
equilibrium for a plain strain problem in the (x, z) plane, given by: 
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Considering the case of cylindrical bending, where 0xy yzxy 0yz  and taking 

into account the kinematic assumptions, integrating through the thickness of each 
discrete layer and collecting the common terms, the equations of motion are 
related to the resultant laminate stiffness and mass matrices as: 
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In the previous equations, , 1, ,m n N1,1, , N, , where the index n is summative and 

the generalized laminate matrices are given by: 
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33
mnD , 13

mnB  and 13
mnB  are the out-of-plane generalized laminate matrices given by: 
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and mnmn  is the generalized mass matrix.   
 
The surface tractions admitted by Eqs. (4) are: 
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General Solution of the Transformed Functions 
 

In order to solve the governing equations of motion in terms of displacement, a 
double Fourier transform with respect to time and space is first applied to Eq. (4), 
according to the analytic form: 
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This results in the following equations in the frequency-wavenumber domain in 
matrix form: 
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where , 1, ,m n N1,1, , N,  and the index m is summative; , , xzU W F  and zF  are the 
coefficients of double Fourier transforms on the displacement and force 
components.  

In order to get the frequency domain solution, the above equation (6) is solved 
for various values for the Fourier variables (ξ, ω) and the displacement 
components are derived.  

To obtain the time domain response of the structure, the inverse transform of 
Eq. (5) needs to be performed, given by: 
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The integrations involved in the Eq. (7) are usually calculated numerically at 

discrete pairs of valued for (ξ, ω).  
 
Modeling of Damage 
 

In order to simulate laminate damage at a specific ply, the respective ply 
properties are degraded for a finite length along the strip.  A delamination crack of 
length 2 1d x x2 1x x2 , as shown in Figure 1, is modeled as the degradation of 
mechanical properties 12 13,G G and 33E of the material to 10% of its initial value 
along the x direction, in a very thin discrete layer, representing the interphase at 
the location of delamination.  

A general graph showing the assumed spatial property degradation is shown in 
Figure 2.  
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Figure 2. Assumed variation of mechanical properties along the strip 

 
 
APPLICATIONS AND DISCUSSION 
 

In the present paper, interest is focused on the response of the strip in the 
frequency-wavenumber domain, comparing the healthy baseline specimen with 
various sizes of delamination cracks. 
 
Materials and Geometry 
 

All applications presented in this section were focused on composite 
Glass/Epoxy strips with UD laminations, 3.7mm total thickness and semi-infinite 
length. The properties of the composite layers are 11 45E GPaGPa45 , 33 13E GPaGPa13 , 

13 0.2913 0.29 , 13 4.4G GPaGPa4.4  and 32000 /kg mg /2000 g . Two different delamination crack 
sizes were used, placed at the mid-span of the strip. Through the thickness of the 
composite strip, the fields were modeled using 16 discrete uniformly spaced 
layers.  
 
Displacement Solution in Frequency Domain 
 

Numerical results of the developed semi-analytical wave solution were 
extracted in the frequency-wavenumber domain, by solving Eq. (6) for various 
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pairs of Fourier variables ξ, ω. During the present analysis, a concentrated Dirac 
horizontal force was applied at point 0 0x 0 at the bottom layer of the strip and at 
time 0 0sect 0sec  in order to excite all the frequencies, having the general form: 

0
0 0( , ) ( ) ( )f x t f x x t t0f 00
0 0( ) ( )00 0( ) () (0
0 0  

 
The response of U and W displacement components of the healthy strip in the 

frequency-wavenumber domain for 1024 samples both for ξ and ω variables is 
presented in Figure 3, at a threshold of 1 8thres e me m1 8 . At selected pairs of ξ and 
ω along the curves of Fig. 3, the wave shapes through the thickness of the strip are 
shown in Figure 4, revealing the propagation of different Lamb wave modes, such 
as A0, S0, A1, S1 etc.  

 

(a) (b) 
Figure 3. Response of the healthy strip in frequency-wavenumber domain for (a) U and (b) W 

displacement components 
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(d) 
Figure 4. Wave shapes of U and W displacements through the thickness of the healthy strip showing (a) the A0 

mode, (b) the S0 mode, (c) the A1 mode, (d) the S1 mode 
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For that reason, two different lengths of delamination cracks were modeled in 
the middle layers of the strip, using material properties degradation in a thin 
interphase layer of thickness 0.4265dh mm0. 65m0.4265 . All delaminations start at 

1 37x mm37mm37  from the left edge of the strip, i.e. ten times the total thickness of the 
strip and have lengths d=10 and 100mm.   

Figure 5 presents the plots of the real part of the U displacement component at 
the bottom surface of the strip as calculated from Eq. (6) for various delamination 
sizes, for a threshold of 1 8thres e me m1 8 . From the figure it is at first obvious that, 
above the delamination crack, the displacement field is affected by the damage and 
new modes are added to the frequency output. Furthermore, the size of the crack 
plays an important role on the wave modes through the thickness of the strip, 
depicted in Figure 6, where the displacement through the thickness is plotted at 
selected pairs (ξ, ω).  

 

(a) (b) 
Figure 5. Results for the u displacement component at the bottom face of the strip in the frequency-

wavenumber domain and for different damage sizes: (a) 10mm and (b) 100mm 
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(b) 
Figure 6. Wave shapes through the thickness of the strip showing  for the damaged cases the (a) A0 mode and (b)  

the S0 mode for various frequencies,  
 
CONCLUSIONS 
 

This paper presented a semi-analytical approach for the solution of the wave 
propagation problem along a semi-infinite strip. Kinematic assumptions using the 
discrete layerwise theory were used in order to approximate the displacements 
through the thickness, whereas a 2D Fourier transform was implemented both in 
time and space variables. To this end, the transformed solution of the problem in 
frequency-wavenumber domain was obtained. Two different configurations were 
examined; one healthy model and one with delamination crack. The damage was 
approximated assuming material degradation in a discrete layer of finite length, 
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simulating the size of the delamination. Results in frequency-wavenumber domain 
show great influence of damage existence on the wave characteristics of the 
model. Moreover, the proposed model seems to have promising capabilities for the 
qualitative estimation of damage size and location along the strip’s length.  
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