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ABSTRACT 
 

An investigation is performed to develop a methodology for optimizing the layout 
of piezoelectric transducers based actuator-sensor network that will maximize the 
detection capability of a given SHM system for a hot spot in aerospace structures. The 
method utilizes a simulation tool for wave propagation as a basis to integrate pre- 
selected diagnostic algorithm with an optimization tool to maximize the probability of 
detection (POD) for a given damage size in a structure. The proposed method 
minimizes the number of actuators and sensors while maximizing POD through the 
selection of optimal location for each sensor and actuator. Fatigue cracks in metallic 
structures were studied in this investigation. This paper will highlight the method as 
well as some results for metallic structures. 

 
 

INTRODUCTION 
 

Extensive studies have been carried out recently for diagnostic algorithms for 
detecting damage in structures with built-in sensors and actuators.  The detection 
capability of a given SHM system strongly depends on not only its algorithm, but also 
the sensor-actuator density, their distribution, and the hardware sensitivities (signal to 
noise ratio). 

However, there have been limited studies on sensor network optimization [1-8] for 
SHM systems. Combinatorial optimization algorithms, particularly Tabu Search (TS), 
Simulated Annealing (SA), and Genetic Algorithm (GA) have been proposed for the 
optimization of the sensor network. Sensor network optimization methodology for 
passive SHM system has been well documented by Markmiller and Chang [3]. Guo et 
al. [4] implemented improved strategies for GA based technique to optimize sensor 
locations for truss structure. Gao and Rose [5] presented a GA-based technique which 
optimizes the sensor placement by minimizing miss-detection probability with the 
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covariance matrix adaptation evolutionary strategy (CMAES). Das et al. [6] estimated 
the sensor certainty region through experimental data and used it to optimize sensor 
network by minimizing the overlap region. Guratzsch and Mahadevan [7] developed a 
probabilistic Finite Element Analysis based technique which includes model input 
uncertainty.  It  was  used  in  optimizing  the  sensor  network  by  maximizing  the 
reliability of damage detection. Flynn and Todd [8] proposed an approach to optimize 
the sensor network by minimizing Bayes risk. This approach utilizes pulse-echo and 
pitch-catch data for damage detection. 

In this study, we are proposing a model-assisted probability of detection (POD) 
based methodology to optimize an active sensing network to achieve highest POD. An 
efficient analytical tool is developed which is integrated with a spectral element 
method (SEM) based wave propagation simulation tool, Piezo Enabled Spectral 
Element Analysis (PESEA) [9]. 

 
Problem Statement 

 
Given a geometry and material properties of a structure and a pre-selected 

diagnostic SHM system, it is desired to determine the optimal sensor network layout 
such that the POD is maximum for a given crack size ‘a’ which may appear anywhere 
in a defined region. 

 
 

METHOD OF APPROACH 
 

In this study, an active sensing diagnostic algorithm (pitch-patch and pulse-echo) 
[10] is selected throughout the investigation for detecting damage in structures.  For a 
given sensor network layout, the detectability depends on the sensitivity of scatter 
signal (difference between the baseline signal from the undamaged pristine structure 
and the current signal from the damaged structure) to exceed a predefined threshold. 
The distance is defined as damage detection distance (D3). Unfortunately, D3 strongly 
depends on the material properties, the geometry of the structure, the sensor-actuator 
layout, and the hardware and software. If the software and hardware are chosen, value 
of D3 must be determined before the network is selected. 

In this work, a model-assisted sensor network optimization technique is developed 
to calculate D3 for the entire structure. A spectral element method based numerical 
tool is used to simulate ultrasonic wave propagation in structures to estimate D3 

profile. Once the D3  profile is estimated, genetic algorithm (GA) [11] based 
optimization algorithm is implemented to optimize the sensor network by maximizing 
probability of detection of the network (PODnet) which is defined in the next section. 
A schematic of the sensor network optimization technique proposed in this work is 
shown in Figure 1. 

For a given structure with an SHM system, there are three parameters which can 
affect D3: (i) critical damage size ‘a’, (ii) damage orientation, and (iii) environmental 
conditions. ScNRaX is defined as scatter to noise ratio and is given by Equation 1, 
where SaX is the scatter amplitude due to a damage of size ‘a’ for wave propagation 
distance ‘X’, N is the amplitude of noise. ScNRaX is proportional to the damage size 
which means higher D3 for higher damage sizes and vice-versa. Damage orientation 
also affects the scatter present in the signal by reflecting the propagating wave in 
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different directions. When the temperature of the structure increases, wave dispersion 
and noise in the sensor signal increase which results in lower ScNRaX and lower D3. 
Variations in the above three parameters is important and should be considered in 
designing an optimized sensor network for a given structure. 
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Figure 1. Schematic of the proposed approach for the sensor network optimization of SHM system. 

 
SEM simulations to calculate D3

 

 
In this study, spectral element method (SEM) based code is used to solve coupled 

equations of motion and Gauss’s law to physically model piezoelectric transducers 
and simulate ultrasonic wave propagation in structures [9]. Attenuation in viscoelastic 
materials is implemented by introducing Rayleigh damping. Change in ambient 
temperature affects the sensor signal. This effect is incorporated in PESEA by varying 
the material properties of the structure, adhesive, and piezoelectric transducers with 
temperature [12]. PESEA can also be used to model ultrasonic wave propagation in 
complex structures with damage, such as crack in metallic structures and 
debond/delamination in composite structures. Crack in metallic structures is mode led 
by separating the nodes of appropriate neighboring elements to create a volume split. 
Debond/delamination is modeled by creating duplicate nodes and creating a volume 
split.  Nodes  in  the  area,  where  debond/delamination  needs  to  be  modeled  are 
separated by small distance, like 5 μm. 

In this study, simulations were carried out for an aluminium plate (10”× 23” × 2 
mm) at different temperatures (25°C, 45°C, 65°C and 90°C) and crack orientations. In 
the  simulations,  0.25”  diameter  and  10  mil  thick  lead  zirconate  titanate  (PZT) 
elements  were  used  to  actuate 250 kHz ultrasonic Lamb waves and the propagating  
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waves were sensed by sensor elements 2 to 6. Simulated sensor data were analysed to 
calculate D3  profile through the estimation ScNRaX  for different wave propagation 
distances and different environmental conditions. From Figure 2, D3 can be estimated 
as 9.75”. 
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Figure 2. (a) Schematic of aluminum plate (with and without crack) attached with PZT elements, (b) 
and Scatter to Noise Ratio (ScNRaX) for different wave propagation distances under varying 
temperature conditions. 

 
Probability of Detection of Sensor Network (PODnet) 

 
PODnet is defined as the overall network POD of the monitoring system in 

detecting damage anywhere in the structure. In general, PODnet should be 100% for a 
given monitoring system. In this work, total structure is discretized into a grid of 
points based on the required resolution in X and Y directions and it is assumed that 
the detectability of a point is either ‘0’ or ‘1’ based on the following criterion. 
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Where, P is index of a point in the grid, a, s are indices of actuator and sensor 
respectively, m, n are numbers of actuator and sensors respectively. Dmin  is minimum 
distance between any actuator and sensor (this is required due to the signals’ 
crosstalk). D(a,s,P) is the summation of distance from actuator ‘a’ to point ‘P’ and 
from point ‘P’ to sensor ‘s’. 

 
Genetic Algorithm (GA) based optimization tool 

 
Evolutionary computation techniques such as GA [11] are search algorithms based 

on the mechanics of natural selection. They are robust, conceptually simple and very 
efficient in finding a near global optimum. The GA based inverse method of 
reconstruction starts with a population of randomly guessed candidate solutions 
(initially three sensor locations parameter sets) where each candidate solution 
corresponds  to  the  location  of  sensors.  For  each  candidate  solution,  PODnet   is 
evaluated using the objective function (Equation 4).  Candidate solutions which have 
high PODnet value can be placed in the selection process to go to the next generation 
while the rest of them are discarded. Typically, this process needs to be carried out 
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several hundred times to achieve the maximum PODnet value required for the given 
application.  Once  the  maximum  PODnet   reaches/exceeds  the  required  PODnet 

specified in the requirement, then the optimization process stops its evolution. If the 
maximum PODnet  in a generation doesn’t reach required PODnet, then one more 
sensor is added and the evolution process starts all over again and this process is 
repeated until required PODnet is achieved. The objective function (PODnet) to be 
maximized during this process is given by the following equation, where P is index of 
the point and N is total number of points in the grid. 
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Effect of System and Environmental Parameters on PODnet 

 
PODnet of a structure varies with variations in the sensor placement, the number of 

sensors, D3  profile and the temperature. Hence, it is important to keep these 
parameters in mind while designing a sensor network for a given structure. In the 
following illustrations, 18”×15”×0.078” thick aluminum plate and 250 kHz wave 
frequency were considered. 

 
Effect of sensor placement on PODnet 

 
In order to show the importance of the sensor placement on overall detectability, 

two sensor network configurations (original and modified) with six element sensor 
network were considered. Modified configuration was the same as the original 
configuration except the location of one sensor which was changed slightly. PODnet of 
sensor network was calculated for the original and the modified configurations. Figure 
3 shows the effect  of sensor placement  on the PODnet. It  can be observed that 
optimized sensor placement influences the overall damage detectability. 

 
 
 
 
 
 
 
 
 

POD=90.0% 
 
 
 
 
 

Figure 3. Effect of sensor placement on the PODnet. 
 

Effect of varying number of sensors and D3 profile 
 

For a given structure, PODnet  can be improved by increasing the number of 
sensors. Figure 4 shows that increasing the number of sensors from 4 to 6 increases 
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PODnet from 48% to 75% which is a huge improvement. Similarly, increasing the D3 

improves the detection capability which is evident from Figure 4 (b). For a given 
monitoring system, D3 can be improved by using more sensitive sensors, better data 
acquisition and data analysis software, and using optimum signal parameters such as 
the actuation frequency, the number of cycles in the input signal. 

 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Figure 4. (a) Effect of number of sensors on PODnet, (b) Effect of varying DDD on PODnet
. 

 
 

Effect of temperature on PODnet 

 
SEM based wave propagation model was used to simulate the sensor signals when 

the sample is at 25°C, 40°C and 55°C temperatures. The simulated sensor data were 
analyzed to estimate D3 profile, which was used to calculate PODnet. It was observed 
that D3 decreases with increase in temperature as noise in the signal increases. From 
Figure 5, it can be seen that PODnet  of the given sensor network reduces with the 
increase in environmental temperature. 

 
 
 
 
 
 
 
 
 
 

Figure 5. (a) Effect of temperature on PODnet
.
  

 
Diagnostic Methods 

 
Higher damage detectability for a given sensor network can be achieved by 

fusing the data collected in pulse-echo (PE) and pitch-catch (PC) based data 
collection techniques. In this proposed sensor network optimization technique, 
pulse-echo and pitch-catch techniques are fused to improve the area covered by 
each sensor. As an example, for a given isotropic sample attached with two sensors, 
PODnet  is estimated for pulse-echo, pitch-catch, and the data fusion technique. 
Figure 6 shows that combining the advantages of PE and PC through data fusion, 
PODnet  increases considerably.   The blind region in Figure 6 (a) represents the 
near-field area of sensors which has low sensitivity for damage detection due to the 
overlap of the actuation signal with the sensor signal. The size of the blind region 
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depends on the actuation frequency, the number of cycles in the input signal and 
the velocity of wave. PODa for the points inside the blind region is zero. 

 

PODnet = 26% PODnet = 32% PODnet = 42% 

Blind region 
 
 
 

Transducers  Transducers  Transducers 
 

(a) PE only (b) PC only (c) PE and PC 

Figure 6. Comparison of coverage area with Pulse-echo and Pitch-Catch methods. 
 

To compare the coverage area for isotropic and anisotropic in PE configuration, 
single  sensor  attached  on  an  isotropic  (aluminum)  and  an  anisotropic 
(unidirectional carbon composite) samples is considered.   Figure 7 shows the 
coverage area profile for isotropic and anisotropic samples, which is proportional to 
the attenuation profile of respective samples. 

 
PODnet = 15% PODnet = 20% 

 
 

 
Transducers 

Isotropic Anisotropic 
 

Figure 7. Comparison of single sensor coverage area for isotropic and anisotropic samples. 
 

 
 

AN EXAMPLE 
 

To summarize the proposed methodology of sensor network optimization, an 
aluminum stiffener panel with a cutout shown in Figure 8 was considered as an 
example. Dimensions of the structure were 375 mm × 375 mm × 2 mm thickness 
while the dimensions of cut-out were 50 mm × 50 mm with a crack initiated at one of 
the corners of the cut out. Required PODnet for the structure was specified as 100%. 

SEM based wave propagation model was used for the structure shown in Figure 8 
(a) and is calibrated to estimate in-situ material properties, and attenuation profile. 
Several transducer elements were modeled on the structure and calibrated SEM model 
was used to generate simulated sensor signal with and without simulated damage. 
Simulated sensor signals were analyzed, as mentioned in previous section, to estimate 
D3 profile in different regions on the structure. 

In order to achieve practical sensor network, along with D3  profile, a few mor e 
parameters such as the minimum distance from edges, the minimum and maximum 
distance between any actuator-sensor pair were given as input to the sensor network 
optimization tool. The minimum distance between PZT elements and edges of the 
structure was selected as 3” so that direct and boundary reflected sensor signal were 
well separated. In order to remove the effect of crosstalk in PC network configuration, 
the minimum distance between actuator and sensor was constrained to 4” and to 
improve the damage detectability maximum distance between any actuator-sensor pair 

7



 

was constrained to 90% of D3  in that direction. The above parameters allowed the 
sensor network optimization tool to minimize the computational time in designing a 
more practical sensor network to satisfy the required performance levels set for the 
structure. 
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Figure 8. Demonstration of sensor network optimization tool (a) Schematic of aluminum 
structure with stiffeners and a cutout, and (b) Optimized sensor network. 

 

The estimated D3 profile and the above constraints on sensor locations were given 
as input to the GA based optimization tool to optimize sensor network to achieve 
100% detection capability. GA was implemented with following GA parameters. 
Number of generations was set as 250, crossover was set as 1.0, mutation chance and 
creep chance were set as 0.25, and creep amount was set as a random amount within ± 
5% from the mean of candidate solution. To preserve top candidate solution from GA 
based  operations,  candidate  solution that  corresponds  to  the  highest  fitness  in  a 
generation was directly placed into the next generation. The optimization process 
started as two sensor optimization problem and was run for 250 generations. At the 
end of 250 generations, the maximum PODnet corresponding to the optimized sensor 
network was less than the required PODnet, hence, one more sensor was added to the 
parameter set and the optimization process was started all over again. This 
optimization process was repeated until the maximum PODnet was equal to 100%. The 
optimized sensor network for the given structure is shown in Figure 8(b). The 
optimized sensor network configuration is tested by simulating 10 mm crack at top 
left hand corner of the cut-out. The damage was detected by the diagnostic algorithm 
[14] fusing PE and PC data. Damage was also simulated at few other locations and 
was detected by the diagnostic algorithm. 

 
 

CONCLUSION 
 

A probability of detection (POD) based sensor network optimization tool is 
developed which uses a physics-based wave propagation model and genetic 
algorithm evolution process. A detailed description of the tool and the effects of 
different parameters such as sensor spacing, number of sensors and environmental 
conditions on the overall damage detectability are discussed. The proposed 
methodology also defines the damage detectable distance and considers fusion of 
pulse-echo and pitch-catch sensor data to optimize sensor network for detecting 
damage of size ‘a’ under different environmental conditions that prevail in the 
practical usage of the structure. Performance of the proposed optimization tool was 
tested  on  simulated  signals  generated  for  a  complex  aluminum  structure  with 
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stiffeners and a cutout. The optimized sensor network was tested through simulated 
sensor data for damage at different locations on the structure. Efforts are underway 
to experimentally validate the proposed methodology and also to develop a sensor 
network optimization tool for composites and more complex structures. 
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