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ABSTRACT 
 

In this paper the temporal and spectral effects of the flexible support on the 
response of multi-span bridges subjected to spatially-varying differential support 
motions are investigated by using wavelet transform. The Modified Littlewood-Paley 
wavelet basis is used for the analysis. In the case study of a two-span bridge, the 
spatially-varying earthquake motions at support bases are simulated. Two finite 
element-based models of the bridge, the rigid-base support model that assumes rigid 
soil from the foundation beds, and the flexible-base mid-support model accounting for 
actual soil stiffness, are analysed. In addition to shortening structural vibration period 
and amplifying the response amplitude, the flexible base is found to act as a time 
delay operator to the bridge responses.. 

 
 

INTRODUCTION 
 

The spatial-variability of ground motions have pronounced effects on the 
response of extended structures (Chakraborty and Basu, 2008). Most of extended 
structures are multiple-supported where the supports are founded on different soil 
conditions. The effects of variability in soil conditions on spatially-varying ground 
motions have been studied (Konakli and Kiureghian, 2011). However, the effects of 
such variability in soil conditions, especially for the soft soil, on the responses of 
multiple-support bridges subjected to spatially-varying excitations have rarely been 
reported in the literature and will be investigated in this paper with a view to monitor 
the support flexibility of the bridges. 
 The flexible base may influence both the stiffness of the multiple-support bridge 
and the arrival time of seismic waves.  Thus, temporal and spectral properties of the 
bridge responses may be modified by the flexible base. A time-frequency analysis tool 
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is therefore necessary and the wavelet-based analysis can meet that need (Chakraborty 
and Basu, 2010). In this paper, the temporal and spectral effects of the flexible base on 
the responses of the bridge subjected to spatially-varying excitations are investigated 
by using wavelet transform and the Modified Littlewood-Paley (Basu and Gupta, 
1998) is chosen as the wavelet basis. 

In the case study of a two-span bridge, the spatially-varying earthquake motions at 
support bases are simulated. Two finite element-based models of the bridge, the rigid-
base support model that assumes rigid soil from the foundation beds, and the flexible-
base mid-support model accounting for actual soil stiffness, are analysed. In addition 
to shortening structural vibration period and amplifying the response amplitude, the 
flexible base is found to act as a time delay operator to the bridge responses. 

 
 

MODELING OF A MULTI-SPAN BRIDGE WITH FLEXIBLE SUPPORT 
UNDER SPATIALLY-VARYING SUPPORT MOTIONS 

 
Consider a bridge having N degrees of freedom (DOFs) and n supports subjected 

to excitation time histories ug = ug1 ug2  ugN, in which ugr is different from those at 
the other supports. The bridge is modelled in a finite-element (FE) framework leading 
to a discrete dynamical system model. Assuming that the effect of entire velocity-
damping coupling is negligible in comparison to that of the inertia, the motion 
equations of the bridge is given by 

 
  gg u MMEKuuCuM   (1)  

 
where, u(t) represents the displacement vector relative to the support motions and M, 
C, and K are the system NN mass, damping and stiffness mass matrices, 

respectively. In Eq. (1), gKKE -1  is the Nn influence coefficient matrix, the Nn 

matrices Mg and Kg accounts for the coupling of the inertia and stiffness between 
structural DOFs and ground motion DOFs. 

To facilitate modal analysis, the assumption of lumped mass matrix has been 
widely adopted. Consequently, the coupling of the inertia between structural and 
ground motion DOFs,  guME  in Eq. (1) disappears. In this paper, the consistent 

mass matrix is used. Thus, the inertia coupling term  guME  is included in Eq. (1). 

Moreover, the flexible bases are accounted for by modifying the stiffness matrix and 
the boundary conditions of the rigid-base structure. The stiffness matrix of a flexible 
support structure is no longer modal-decoupled and direct integration method is used 
to solve the motion equations (1). 

In the flexible-base support, actual soil stiffness and damping coefficients are 
frequency-dependent. For simplification, a constant vertical stiffness (Wolf and 
Deeks, 2004) of the soil base can be assumed as in Eq. (2) where L and B are the 
dimensions of the rectangular base and Gs is the shear modulus of the soil. 

 

s

s
sz

rG
K




1

4 0 ,  


BL
r


0  (2)

2



SIMULATION OF SPATIALLY-VARYING NON-STATIONARY MOTIONS  
 

The simulation of spatially-varying non-stationary subsurface motions (Dinh et 
al, 2012) are briefly presented. Earthquake motions at n subsurface sites,   tug1 , 

 tug2 , …,  tugn , can be considered as components of the one-dimensional multi-

variate (1D-mV) non-stationary zero-mean stochastic vector processes having 
diagonal and off-diagonal elements of the cross-spectra density matrix as 

 

      jjjj StAtS
20 ,,   (3)

 

            jkkjkjjk SStAtAtS ,,,0  ,  j, k = 1, 2, …, n; j  k (4)

 

where Aj(,t) and    2
 subs

jj HS  are the amplitude-and frequency-modulation and 

the stationary power spectral density function of  tugj , respectively. The term 

Hsubs() is the Fourier amplitude spectrum of earthquake motions at subsurface sites 
that can be represented by using the stochastic seismic spectrum that consists of the 
scaling factor, the two-corner frequency source spectrum, geometrical spreading 
function, path-dependent attenuation, diminution factor accounts for the path-
independent attenuation of high-frequency waveforms, and the amplification factor 
approximated by the source-to-site impedance ratio.  

The term jk() in Eq. (4) is the complex coherency function between  tugj  and 

 tugk ,  ),(exp),()(  jkjkjk i , where jk is the separation distance between 

sites j and k. The complex part of jk() is the coherency phase that is incorporated by 
the wave passage effect and arrival-time perturbations in this paper as 

 jkrsikjk tV ,),(    with tr,jk being a zero mean normally distributed 

random variable. The real part |(jk,)|, 0  |(jk,)|  1 called the lagged coherency 
characterizes the variation in space. The functional form of Harichandran and 
Vanmarcke (1986) lagged coherency (H-V1986) model is adopted with subsurface 
site parameters estimated by Dinh et al. (2012). 
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The 1D-mV algorithm (Deodatis 1996) is then introduced to simulate the 

motions. To provide temporal non-stationary, common forms of intensity modulation 
can be used together with the total duration at a site (Dinh et al., 2012) that is 
contributed by both source and path durations. Aj(,t) can be the parametric time- and 
frequency-modulation (Chakraborty and Basu, 2008). 
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CONTINUOUS WAVELET TRANSFORM 
 

Consider a “mother” wavelet function,  t , having finite energy. A family of 

baby wavelets can be constructed by scaling and translating (t) using the dilation (or 
scale) parameter ‘a’ and the translation parameter ‘b’ as 
 

  






 


a

bt

a
tba  1

,  (7)

 
The parameter b localises the basis function at t = b and its neighbourhood, where a 
controls the frequency content of the basis function by stretching or compressing it 
(with the number of cycles remaining unchanged). 

The continuous wavelet transform of the finite energy process u(t) with respect 
to the basis  t  is obtained by convolving the signal u(t) with a set of its baby 
wavelets  

 

    dt
a

bt
tu

a
bauW  






 

 *1
,   (8)

 
where (*) denotes the complex conjugate. Eq. (8) gives the localized frequency 
information of u(t) around bt  . The wavelet transform coefficient,  bauW , , 

represents how well the signal u(t) and the scaled and translated mother wavelet 
match. More significantly,  bauW ,  represents the contribution to u(t) in the 

neighborhood of bt  and in the frequency band corresponding to the value of a. The 

scale and translation parameters can be numerically assumed as j
ja   and 

  bibi  1  where  and b are constant parameters.  

In this paper, the Modified Littlewood-Paley (MLP) (Basu and Gupta, 1998) is 
chosen as the wavelet basis because it provides high accuracy in spectral analysis and 
advantages in numerical computation. The MLP wavelet basis pairs is given by 
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(10)

where 1F  is the initial cut-off frequency of the mother wavelet. It is noted by Basu and 

Gupta (1998) that n12 , n  4 is found reasonable based on investigations on 
several ground motions recorded. However, as small value of  leads to increased 

computational effort, 412  has been chosen. 
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CASE STUDY 
 

A two-span simply-supported bridge crossing over a river as shown in Figure 1a 
is considered.  The two abutments and the mid-support having rectangular bases are 
supported by bored piles reaching a hard soil layer at the depth –50 m.  The bridge has 
span length L = 88 m, inertia moment and area of the cross section Ic = 5.33 m4 and Ac 
= 4.0 m2, elastic modulus E = 2.01011 N/m2, Possion ratio  = 0.29, mass density  = 
7860 kg/m3, and modal damping ratio 1 = 2 = 0.02. 

As the two abutments rest on large groups of piles in order to avoid differential 
settlement with the approach slabs, the two end-supports of the bridge can be assumed 
to rest on rigid bases. The mid-support resting on a smaller group of piles can be 
modeled as a rigid-base support (RBS, Figure 1b) or a flexible-base mid-support 
(FBMS, Figure 1c). The first five natural frequencies of the RBS model are 1.182, 
1.846, 4.727, 5.984 and 10.647 Hz. Those of the FBMS model with L = B = 2 m are 
1.182, 1.274, 3.128, 4.727 and 7.551 Hz. The inclusion of flexible base at the mid-
support reduces significantly the natural frequencies of all vibration modes except the 
first, which is dominant and asymmetric. 

The time-histories of the spatially-varying non-stationary accelerations (SVNA) 
at there subsurface sites beneath the support are simulated by using Eqs. (3-6). The 
parameters estimated at the separation distance 88 m for the H-V1986 lagged 
coherency model are A = 0.4567, 0.00798, 6.848, f0 = 2.608 Hz, and k = 
1.799105 m (Dinh et al. 2012). A single realization of acceleration at site 1 and site 2 
is given in Figures 2(a, b), respectively.   
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Two-span bridge: (a) Geometry; (b) RBS model; (c) FBMS model. 
     

 
Figure 2. Samples of acceleration excitations at foundation bases: (a) site 1 and (b) site 2. 

 
Figure 3 shows the computed time histories of the left mid-span vertical 

displacement of the RBS model and FBMS model by SVNA excitations. The 
vibration periods of the FBMS model are considerably larger that of the RBS model. 
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Contrary to the response of the RBS model, the amplitude of the FBMS model is 
much amplified in the second half of the duration. When the soil damping is excluded, 
the FBMS model amplitude peaks are larger than that of the RBS model. 

To monitor both temporal and spectral effects of the flexible base on the bridge 
responses, the computed time histories of the responses are transformed into wavelet 
domain by using Eq. (8) and the MLP wavelets.  Having observed from the Fourier 
amplitude spectra of excitations presented by Dinh et al. (2012), the most of the 
energy input lies in the frequency range 0 to 15 Hz. As shown in Table 2, the five 
fundamental natural frequencies of both RBS model and FBMS model are also in that 
range. To cover such a frequency range, the scale parameters selected are aj = j,   = 
21/4 and j = - 24, +3 and F1 =1.5 Hz.  

Figures 4(a-b) shows the squared wavelet coefficients of the left mid-span 
vertical displacement of the RBS and the FBMS models, respectively. In the RBS 
model, all peaks occur in the frequency 6 to 14 Hz, the highest peak corresponds to a 
frequency of about 11 Hz and appears early in the time duration 0 to 12 s. Whereas in 
the FBMS model, all peaks occur in the narrower frequency range 6 to 10 Hz, the 
highest peak corresponds to a lower frequency of about 6.5 Hz and appears later in the 
time duration 10 to 25 s. These wavelet analyses results can be used as an indicator for 
monitoring the health of the bridge with respect to the flexible support effects. 

 

 
Figure 3. Vertical displacement at the left mid-span of of FBMS model with undamped soil and base 
2×2 m (continuous heavy line) and RBS model (red dashed x), SVNA excitations. 
 

 
Figure 4. Squared wavelet coefficients of vertical displacement at the left mid-span, SVNA excitations; 
(a) RBS model, and (b) FBMS model with undamped soil and base 2×2 m.  

(a) (b)
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CONCLUSIONS 
 

The temporal and spectral effects of the flexible base on the responses of multi-
span bridges subjected to spatially-varying differential support motions have been 
investigated by using wavelet transform with the Modified Littlewood-Paley wavelet 
basis. In the case study of a two-span bridge, the spatially-varying earthquake motions 
at three support bases are simulated. Two finite element-based models of the bridge, 
the rigid-base support model that assumes rigid soil from the foundation beds, and the 
flexible-base mid-support model accounting for actual soil stiffness, are analysed. The 
wavelet analysis of the vibration responses of the bridges can be used to monitor the 
health of a bridge with respect to the flexibility of the foundations. 
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