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ABSTRACT 

 
Typically, an active structural health monitoring system (SHM) consists of an 

integrated network of actuator/sensor piezoceramic elements that inject and receive 
ultrasound pulses into the host structure collecting information about structural health. 
Although numerical simulation has been used extensively in understanding and aiding 
in the design of such systems, analytical models are still the primary vehicle for 
understanding actuation and sensing mechanisms. Being based on simplified 
assumptions it suffers from certain limitations with respect to its extension to SHM 
systems. The main assumption of equivalent loading is neglecting the mechanical 
coupling by replacing the piezoceramic with equivalent load(s). The present work 
addresses two of the limitations of this assumption, namely the effect of the thickness 
of the piezoceramic element on the equivalent load in dynamic setting at high 
frequency. This study is done via a novel formulation based on earlier work 
considering Lamb waves as a propagating carrier wave with superimposed modes 
which is not limited to isotropic media and the inclusion of the generalized loads are 
done via the reciprocity relation. The model results are compared with the numerical 
simulation results using commercial finite element software (ANSYS) for a wide 
range of frequencies. The applicability of the model to frequencies as large as 0,5 
MHz is demonstrated. The effect of the loading on the energy partitioning between 
Lamb fundamental modes, without the need for prior adjustment comes as the first 
advantage of the presented model over the classical integral transform based models, 
thus enabling a direct relation for mode tuning. The second advantage is the easy 
inclusion of the finite frequency content of the excitation through Fourier transform, 
relaxing the assumption of harmonic waves propagation that prevails in the classical 
models enabling a more realistic signal to be modeled. 

 

 
 

Ramy Mohamed, Peyman M. Yazdanpanah, Patrice Masson 
GAUS, Mech. Eng. Dept., Université de Sherbrooke, QC, J1K 2R1, Canada 

6th European Workshop on
Structural Health Monitoring - Tu.3.D.1 

 
Licence: http://creativecommons.org/licenses/by-nd/3.0 

 

1



INTRODUCTION 
 
The representation of the displacement fields as summations over normal modes 

of vibration or wave propagation of an elastic domain is a common method in solving 
excitation problems. However, for the dynamic response of an infinite elastic plate 
involving Lamb modes, this procedure has not been applied extensively until 
relatively recently. The modes of wave propagation in an elastic plate are well known 
since Lamb's classical work, the Rayleigh-Lamb frequency equation is well 
understood and comprehensively analysed, yet till the work of Achenbach and Xu 
[1,2,3], no direct way in using these modes to deduce the displacement fields has been 
implemented. Achenbach and Xu work provided a usable orthogonality relation and a 
suitable method to obtain the modal coefficients. Although these relations have been 
published in the literature for nearly 15 years now, it did not find its way yet to the 
SHM field. The main objective of this paper is to test the applicability of this novel 
formulation to the practical applications related to the structural health monitoring 
field. A review of the novel formulation of Lamb waves is presented in the following 
section, followed by the use of reciprocity relation to formulate the orthogonality 
condition to relate the kinematic modal description to the general mechanical 
excitation. The second section will proceed to formulate the piezoelectric excitation as 
equivalent mechanical loading, and then formulating the displacement field induced 
by such an excitation in terms of summation over Lamb modes in Achenbach's 
formulation. This leads to explicit relation for the frequency mode tuning. 

 
MODAL FORMULATION FOR LAMB WAVES 

 
Following Achenbach [1], the Cartesian components shown in Figure 1 of the 

displacement field are expressed as: 
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where ݇ is the wavenumber. Equations (1)-(3) satisfy the elastodynamic equations of 
motion if the dimensionless function ߶ሺݔଵ,  is a solution of the reduced membrane	ଶሻݔ
equation: 
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and	ܸሺݔଷሻ, and ܹሺݔଷሻ	are solutions of the following ODEs system: 
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where ߣ and ߤ are Lamé's constants, and ߩ	is the mass density. Solutions of form (1)-
(3) are particularly convenient for Lamb waves; the plate mid-plane is parallel to 
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ଵݔ െ  ଶ plane. In such a formulation ߶ represents a carrier wave for the propagationݔ
in the plate plane, while	ܸ, and ܹ describe the thickness motions for Lamb waves and 
the associated thickness dependence. The enforcement of the traction free boundary 
conditions at the parallel surfaces ሺݔଷ ൌ 	േ݄ሻ	of the plate yields the Rayleigh-Lamb 
frequency equation, a noticeable fact is that no plane strain assumption was used, 
making this formulation a general one for plate waves. 

 
Figure 1: The Cartesian coordinate system used in the formulation.  

 
For Lamb modes at a given frequency ߱, the wavenumber ݇௡ is the solution of the 

Rayleigh-Lamb frequency equation associated with the nth Lamb mode as shown in 
Fig. 2, which, according to their symmetry with respect the plate mid-plane, are 
further divided into symmetric Sn and antisymmetric An modes. For symmetric 
modes, where the wavenumber is referred to as	݇ௌ௡	, the superimposed thickness 
motion takes the form: 
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and for the antisymmetric nth mode with wavenumber ݇஺௡: 
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where ܣ௡ௌ  and ܣ௡஺ are the modal amplitudes that will further be determined based on 
the excitation and the constants ݏଵ⋯ସ	and ܽଵ	⋯ସ	are given in [1]. 
 

For axisymmetric wave propagation, the carrier wave for an outgoing wave is 
expressed using the Hankel function: 
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and for the plane strain case, cf. Fig 1:  

߶ሺݎሻ ൌ 	 ݁ି௜௞೙௫భ 
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Figure 2: Dispersion Curves for aluminum plate of thickness 2h = 1 mm. 

 
Equations (2) and (3) can then be simplified and can be rewritten as: 
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This formulation provides a kinematic description for the admissible motions under 

the traction free boundary conditions. The main noticeable aspect of this formulation 
is that it does not assume a priori plane strain condition, thus extending its 
applicability to anisotropic media and plane stress conditions.  

 
Reciprocity theorems in elasticity theory provide a relation between displacements, 

traction components and body forces for two different loading states of a single body 
or two bodies of the same geometry [4, 5]. Through the use of reciprocity and dummy 
wave solution, Achenbach and Xu [1] formulated a modal orthogonality rule that 
could be used to couple the load with the modal amplitude. For a horizontal load Q, 
the modal coefficients for the fundamental Lamb modes are: 
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where ܫ௡௡
ௌሾ஺ሿ is the orthogonality relations derived via the reciprocity theorem, as given 

by equations (96)-(106) in [1]. 
 

The expressions (12) and (13) provide a direct relation for the modal amplitudes, 
and their dependence on the frequency. From engineering point of view, an advantage 
is the ability to separate the effects of each variable directly. 
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PIEZOCERAMIC EXCITATION 
 
When the piezoceramic elements are bonded to the surface of the plate, and 

subjected to a time varying voltage, it expands and contracts therefore generating 
shear stress at the interface between the plate and the actuator. In the case of perfect 
bonding the shear stresses accumulate at the periphery of the actuator. This model 
assumes that the actuator and the plate are two separate bodies and that the only 
manifestation of the actuator is in the shear traction created at the idealized interface. 
This model is consistent with the perfect bonding assumption, i.e. the shear stress is 
concentrated in a small area close to the edge of the actuator, leading to the well-
known pin force model that originally developed in the active structures field [6]. For 
this model, equations (10)-(11) give for a piezoceramic of length ݈: 
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This gives a sinusoidal dependence on the wavelength, modulated by the modal 

amplitude, which is dependent only on the properties of the media and loading 
conditions. The equivalent pin forces for a piezoceramic ideally bonded to the surface 
of the plate are divided into symmetric and antisymmetric loading as shown in Fig 3. 

 
The effect of the piezoceramic thickness, and its mechanical coupling with the 

plate is not taken into account in the pin-force model, the actuator is assumed to 
remain plane, this assumption ignores the bending behavior of the piezoceramic being 
constrained by the plate. The reciprocity formulation, enables the inclusion of this 
moments easily with minor modifications to the value of the load entering the 
antisymmetric mode coefficient	ܣ௡஺.  

 
Figure 3: Division of pin force loading to symmetric and antisymmetric loading 

(left), and the effect of the piezoceramic thickness represented by the added moment 
(right).  

 
The forces and moments induced by the actuator could be expressed as [7]: 

 

ܳ ൌ	െ
௣௭௧݄௣௭௧݀ଷଵܧ
1 െ ௣௭௧ߥ

௣ܸ௭௧ 

 
(16) 

ܯ ൌ	െ൬
1
8
൰

௣௭௧ܧ
1 െ ௣௭௧ߥ

ቈ4 ൬
݄
4
൅ ݄௣௭௧൰

ଶ

െ
݄ଶ

4
቉
݀ଷଵ
݄௣௭௧

௣ܸ௭௧ (17) 

 
 

5



where ܧ௣௭௧, ,௣௭௧ߥ ݀ଷଵ, ݄௣௭௧ and ௣ܸ௭௧ are respectively the Young’s modulus, Poisson’s 
ratio, piezoelectric coupling coefficient, thickness and applied voltage of the 
piezoceramic element. 
 

This modifies the equation for the antisymmetric mode coefficient only by 
replacing ܳ in equation (13) by ܳ ൅݄ܯ which is manifested in an increase of the 
amplitude of the antisymmetric mode with respect to the symmetric mode. 
 

Figure 4 shows a comparison between the predicted amplitudes of the in-plane 
displacement of the fundamental Lamb modes with the original pin-force model 
(without moment) and the modified pin-force model (with moment). 

 
Figure 4: The predicted in-plane displacement amplitude without including the 

actuator bending effect (left) and with the bending effect (right). 
 
For a time dependent loading with a finite frequency content, ܳሺݐሻ, the function 

can be represented by a Fourier integral: 
 

ܳሺݐሻ ൌ ׬ ෠ܳሺ߱ሻ݁ି௜ఠ௧
ஶ
ିஶ 	݀߱            ,       ෠ܳሺ߱ሻ ൌ ଵ

ଶగ	
׬ ܳሺݐሻ݁ି௜ఠ௧
ஶ
ିஶ  ݐ݀	

 
leading to a direct relation for the dependence of the amplitudes on the frequency 
content of a finite signal. 
 
THEORETICAL AND NUMERICAL RESULTS 

 
Figure 5 shows the results of the in-plane displacement as a function of the 

frequency of excitation with the inclusion of the moment, compared with the FEM 
results of ANSYS simulation of a piezoceramic element bonded to the surface of an 
aluminum plate, in the time domain, at a point 200 mm away from the center of the 
actuator, a plane strain case was assumed, and the time dependent voltage was a 
sinusoidally modulated 6.5 cycles, with 10 V amplitude, the piezocermaic element 
was 5 mm in diameter and 0.25 mm thickness. In order to extract the maximum 
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amplitude of fundamental modes from the time trace signal, Hilbert transform was 
applied to the signal, and the maximum of the real part was extracted, for each mode. 
The properties of the aluminum plate and the piezoceramic element used in the 
simulation are listed in Table 1.  

 
Table 1: The properties of aluminum plate and PZT. 

 Aluminum Piezoceramic 
Young’s Modulus GPa 67  106 
Poisson’s ratio 0.33  0.35 
Density kg/m3 2700  7650 
d31 (C/N) ------ 175 x 10-12 

 
The aluminum plate was made long enough to avoid reflection form the 

boundaries, the length is dependent on the frequency content and the fastest mode of 
the two fundamental modes ܮ	 ൌ 	max	ሺܥ௚ሺௌ଴ሻሻ	tϐ୧୬ୟ୪. The maximum group velocity 
corresponds to the maximum frequency with considerable power in the excitation 
signal. The thickness of the aluminum plate is 1.54 mm. 

 

 
Figure 5: The predicted in-plane displacement amplitude without including the 

actuator bending effect (left) and with the bending effect (right). 
 

The comparison between the FEM results and the theoretical results shows a 
considerable shift in the modes minima and maxima toward higher frequency for the 
PZT coupled simulation as opposed to the theoretical curves. The FEM is a two 
dimensional model, which excludes the possibility of the change in the actuator mode.  
 
CONCLUSIONS 

 
This preliminary study explored a recently new formulation based on the 

elastodynamic reciprocity coupled with a dummy wave solution to extract a usable 
orthogonality relation that enables the direct determination of the modal amplitudes 
associated with the Lamb modes. The applicability of this model to the piezoceramic 
excitation for SHM purposes was explored. The simplicity of the model and the 
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ability of effects separation come as the first advantages with respect to the SHM 
preliminary concept development. The model is more general and its applicability 
could be extended to more applications. 
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