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ABSTRACT 
 
Over the years 2009 to 2011, a full-scale footbridge was the subject of a 

comprehensive monitoring campaign at the UK’s National Physical Laboratory. The 
footbridge was densely instrumented with a variety of different sensors covering 
diverse modalities. The bridge was monitored in its normal undamaged condition over 
an extensive period covering a wide range of seasonal variations in its environment. 
At times in the monitoring campaign systematic damage was introduced. For 
structural health monitoring of the bridge an unsupervised learning approach, or 
novelty detection, is desirable, where one assumes that only measurements of the 
normal condition are available to define a baseline. The standard issue then arises of 
projecting out the environmental variations from feature data so that alarms are not 
raised as a result of benign changes. In the current paper, the means of removing the 
environmental effects is via the use of the cointegration algorithm, which has recently 
been adapted for this purpose from the discipline of econometrics. Damage detection 
results are presented based on the use of Statistical Process Control (SPC) algorithms. 
The results are shown to be consistent with the history of the bridge throughout the 
experimental campaign. 

 
INTRODUCTION 
 

The footbridge which is the basis of the current paper has been at the centre of a 
comprehensive Structural Health Monitoring (SHM) exercise at the National Physical 
Laboratories (NPL) since the year 2008. The footbridge was actually in use at the 
NPL site for over 40 years; when site development required its relocation, it was  
adopted as a test structure.  
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The bridge was densely instrumented with sensors covering a multitude of 
different physical quantities which were thought to show promise as features for 
damage detection. Only the tilt sensors installed on the bridge will be considered in 
this study; for a detailed description of the other sensors and more comprehensive 
background on the bridge, the reader may consult [1]. One aspect of the monitoring 
campaign which became apparent at an early stage was that, because the bridge is 
outdoors like most civil engineering structures, the sensor readings were subject to, 
and in many cases dominated, by environmental variations [2]. It is well known by 
now that one of the main issues in SHM is the fact that changes in measured quantities 
from a structure due to environmental and operational variations may be much larger 
than changes due to damage [3]. This problem is most severe if one adopts a novelty 
detection approach to SHM. In such an approach, only data from the normal condition 
of the structure is used to build a statistical model; if subsequent data deviate from this 
model, one infers damage. The problem with this approach when environmental and 
operational variations are present is evident; if a new environmental or operation 
condition occurs, the method will signal change and a false positive indication of 
damage will occur. There are a number of proposed solutions to this problem as 
discussed in [3]; perhaps the most elegant of these involve projecting out the influence 
of the environmental or operational parameters. A recent addition to these projection 
methods is based on cointegration [4], a technique adapted from the econometrics 
literature, and it is this approach will be adopted here for the analysis of the footbridge 
data. Having removed the effect of environmental and operational variations, one is 
still left with a choice of which novelty detection procedure to employ and a simple 
Statistical Process Control (SPC) approach is adopted here.  

Subsequent sections of the paper will cover a description of the NPL footbridge 
together with aspects of the monitoring campaign and data selected for analysis, a 
brief summary of the cointegration method and a summary of the results of a damage 
detection analysis for the data. 
 
THE NPL FOOTBRIDGE 
 

The footbridge is a substantial concrete structure, weighing 15 tonnes and 20m 
long by 5 m high. As discussed earlier, at the start of the monitoring campaign in 2008 
the bridge was instrumented with a large number of sensors with different modalities. 
The sensors of interest for this study are a set of tilt sensors. The tilt sensors measure 
the local slope of the structure and are therefore sensitive to any distortion of the 
bridge geometry that might result from damage. The tilt sensors used were 
Electrolevel Beam Tilt Sensors and were provided and installed by Soil Instruments 
(now ITMSOIL) [1]. Figure 1 shows a schematic of the bridge showing the location of 
the eight tilt sensors. A number of thermometers were also installed and in general 
these would be important in quantifying the degree of environmental change 
experienced across the structure; however, the readings will not be used in the analysis 
here as the cointegration method is able to remove environmental and operational 
variations without measurements of the associated variables or parameters. Figure 1 
also indicates the point of application of the load induced during testing. 
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Figure 1. Schematic of the footbridge showing the location of the tilt (TL) sensors. 

 
After its relocation and reassignment as a test structure the bridge was subjected to 

a detailed structural survey which concluded that it was in good structural condition. 
No cracking was observed in the surface or soffit of the deck although some damage 
was inferred in the columns as a result of observed distortion.  

The first major test programme on the bridge was conducted in the spring and 
summer of 2009. Over a period of six months the bridge was subjected to a series of 
static short-term and sustained loading tests. The objectives of the tests were: to 
induce displacements in the structure at the upper bounds of the serviceability limits; 
to induce sufficient tensile strains to cause concrete cracking; to simulate 
reinforcement corrosion; to attempt to assess structural performance using data from 
the sensor networks. Loading was imposed using water tanks suspended at the point 
indicated on Figure 1 with an arrow at the end of a cantilever portion of the deck; 
maximum loads of 22kN were achieved. Subsequent inspection showed that the 
concrete had indeed cracked with the main area of damage in the left hand column in 
Figure 1 above the tilt sensor TL7. Data from this first phase of testing were analysed 
and it proved possible to infer a change in structural condition between the pre-test 
and post-test regimes [2].  

The data considered here are from the tilt sensors and cover the period from 
February 2009 to September 2011. In order to use cointegration to remove the effects 
of environmental variations – temperature variation appeared to dominate in this case 
[2] - it is sensible (although not always necessary) to capture all possible variations in 
a training data set. For the current problem, this meant that a year’s data were used to 
establish a baseline condition including all possible environmental variations. The 
training data selected here were taken from the period February 2009 to February 
2010; this meant that the structure experienced damage during the period covered by 
the training set. This is not a problem from the point of novelty detection; the analysis 
begins with a baseline including some damage rather than one for an undamaged 
structure and the question is then if the algorithm can detect further deterioration. In 
the programme of tests following February 2010, there were four events which may 
well have caused further deterioration: 

 
 From 30th June 2010 to 2nd July of 2010 further static tests were carried out 

involving loading and unloading the structure using the water tanks.  
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 On the 18th October 2010, deliberate damage was introduced in the form 
of a cut to a rebar. 

 On the 28th April 2011, a further cut was made and a portion of damaged 
concrete was removed on the 6th May 2011. 

 On the 27th June 2011, a further cut was made. 
 

Over the period, a number of other events occurred including some less significant 
static tests; some attempts at repair were also carried out. 

 
Figure 2. Tilt Sensor 1 readings covering a period of almost two years. 

 
Figure 2 shows the readings from Tilt Sensor 1 over the period February 2009 to 

January 2011. The very clear nonstationarity in the signal is largely the result of 
temperature variations [2]; globally the seasonal variation is evident; at a local scale 
daily variations are also obvious. It is clear that detection of damage against such a 
background of environmental variations is a challenging problem. In the current paper 
the problem is addressed by using the cointegration method to create a univariate 
‘residual’ signal that is purged of environmental variations which can then be used for 
damage detection. The basis of the method is that multiple tilt sensors will yield 
signals which share the temperature trends; a linear combination of the signals can 
then be formed to cancel the trends. The cointegration method will be briefly outlined 
in the next section. 

 
THE BASICS OF COINTEGRATION 

 
The theory is based on the premise that an n-dimensional vector of time series

{ },( 1, , ),iy i T   has been measured and that the appropriate model for the system is 

a Vector-AutoRegressive (VAR) process of the form, 
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where p is the AR order of the process, the [ ]jA are coefficient matrices,{ ( )}D t is a 

(possible) vector of deterministic trends and{ }i is a vector of stationary white noise 

sequences. In general, the series{ }iy may be nonstationary; the idea of cointegration is 

that, under certain conditions, there may exist a stationary time series { } { }T
i iz y

formed from a linear combination of the original series. If a suitable{ } exists, it is 
referred to as a cointegrating vector. It is clear that, for a cointegrating vector to exist, 
the original set of time series must share common trends in order that linear 
combination can remove them. In the context of SHM one can see that the existence 
of a single variable driving the environmental variations in a structure, like 
temperature, would lead to common trends in any multivariate response series 
measured from the structure. This means that cointegration can potentially be used to 
project out environmental variations from features extracted for diagnostic purposes. 
The issue of importance here is, if a series is nonstationary, how nonstationary is it? A 
technical definition is of use here: if a nonstationary process variable y becomes 
stationary after differencing d times, it is said to be integrated of order d, denoted as

~ ( ).z I d  Clearly ~ (0)z I indicates that the sequence is stationary. A variable set 

1{ } ( , , )T
nz z z  (the sampling index is suppressed) is said to be cointegrated of order

( , )d b if and only if [5]; 
 
1. All components of{ }z are integrated of the same order d. 

2. There exists a vector{ } such that { } { } ~ ( ).T z I d b    
3. The components of{ }z are cointegrated variables and{ } is a cointegrating 

vector if and only if .b d  
 
Condition 2 says that the order of integration is reduced byb on forming the linear 

combination. Condition 3 states that  is stationary if an appropriate cointegrating 
vector can be found. In fact, in many cases, multiple cointegrating vectors can be 
found.  

The situation considered here will be the one where the response series{ }iy is 

assumed to be (1)I , in which case, the difference series 1{ } { } { }i i iz y y   will be (0)I

(i.e. stationary). In terms of the difference series, a little manipulation of equation (1) 
leads to the form, 
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which is called a Vector Error-Correction Model (VECM). It is shown in [6] or [7] 
that (roughly) a sufficient condition for a cointegrating vector to exist is that [ ]
should be rank-deficient. Suppose that the n n matrix [ ] has rank ,n r  then a basic 
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theorem of linear algebra asserts that it will admit a decomposition [ ] [ ][ ]T  
where [ ] and [ ] are both n r . It transpires that the columns of [ ] are (up to a 
linear transformation) the desired cointegrating vectors. In principle then, construction 
of the cointegrating vectors looks fairly straightforward; one fits a VAR model to the 
vector time series of interest and converts to the corresponding VECM. Once the 
matrix [ ] is found, its decomposition leads directly to [ ] . Unfortunately, things are 
not quite so straightforward; because [ ] is rank-deficient, standard least-squares 
regression procedures cannot be applied to the parameter estimation problem. A more 
complex reduced-rank regression approach is required; this can be summarised in 
terms of the Johansen procedure ([8] p.165); a detailed discussion of this procedure is 
not possible in the limited space available here; suffice it to say that a principled 
approach is available whereby candidate cointegrating vectors can be computed. It is 
this approach which is adopted here.  
 
ANALYSIS AND RESULTS 
 

The basic data for analysis here were readings from eight tilt sensors taken from 
February 2009 to September 2011. The samples were largely taken at 5 minute 
intervals over that period; however, sampling was irregular and sometimes readings 
were taken at 1 minute intervals and occasionally hourly. The first task in the signal 
processing was to produce regularly sampled data. This task was fairly straightforward 
as all data were time-stamped. The time-stamps were therefore used to select samples 
taken on the hour. Once this was accomplished, the data covering the period February 
2009 to February 2010 were selected to form the training set for cointegration as this 
period covered an entire year of temperature variation. The Johansen procedure was 
applied to the eight tilt signals in the training set to form a cointegrated residual. The 
most stationary residual was chosen for subsequent damage detection. 

Damage detection was carried out here using an X-bar chart, a basic technique 
from Statistical Process Control (SPC) [9]. SPC allows one to detect anomalies in time 
series using techniques at a varying level of sophistication. The most basic control 
chart is the X-chart; the underlying principle is that, if the signal of interest is regarded 
as a Gaussian noise sequence, one can set alarm levels or control limits at 3 standard 
deviations above and below the signal mean for the training set data. Deviations of 
that order would only normally occur 0.3% of the time as a result of statistical 
fluctuations so substantial crossing of the alarm limits would infer that something has 
changed since training and in an SHM context this would infer damage as long as 
environmental and operational variables have been properly accounted for. The X-bar 
chart is a little more sophisticated in that the time series variable monitored is an 
average of the original signal over a sequence of short non-overlapping time windows 
referred to as groups. The X-bar chart has the advantages of suppressing noise by the 
averaging process and of making the summed variable more Gaussian (by the central 
limit theorem) and thus validating the choice of alarm limits in terms of standard 
deviations. 

For the X- bar chart used here, a group length of 24 was used for the cointegrated 
residual essentially giving daily samples. The resulting chart is shown in Figure 3. The 
alarm limits are shown in the figure as horizontal dashed lines. The extent of the chart 
covers the whole data set from February 2009 to September 2011. The region between 
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the beginning of the chart and the first (black) vertical line encompasses the training 
data. One can see that the cointegration procedure has rendered the residual at least 
stationary in the mean, some residual nonstationarity in variance remains. The second 
vertical line (blue) in Figure 3 corresponds to June 30th 2010 when the major static test 
occurred; after the training period but before the blue line the residual remains 
stationary and there are few alarms; after June 30th 2010 there is a clear and sustained 
departure above the upper alarm limit.  

 
Figure 3. X-bar chart for residual after cointegration of tilt signals. 

 
 It was observed that when damage occurred after the March 24th 2009 load 

tests, the cracking was observed weeks after loading and continued steadily [1]. The 
results in Figure 3 are consistent with a similar gradual development of damage. The 
third and fourth vertical lines (red) in Figure 3 correspond to the deliberate damage 
introduced in October 2010 and April 2011. In order to detect any changes 
unambiguously, one would have to retrain here with data in the baseline condition 
resulting from the June/July 2010 load tests; however this is not carried out here as 
one would not necessarily have enough data to encompass an appropriate range of 
temperature variations. One observes though, that after the X-bar chart variable 
stabilises following the June/July 2010 tests, there are distinct dips at the red lines 
when damage was deliberately introduced. Although it may seem that that the residual 
is recovering following these events, it is more likely that the variation is due to the 
fact that, in the new states, the residual is no longer purged of the environmental 
variations. In fact, one should not properly refer to the residual as ‘cointegrated’ once 
the condition of the structure has changed from that when the training data were 
acquired.  
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CONCLUSIONS 
 

Long conclusions are neither warranted nor needed here. In the context of this case 
study, the combination of cointegration and SPC appears to have detected possible 
damaging events against a background of significant environmental variation. This is 
consistent with the performance of cointegration in other studies where environmental 
and operational variations have proved problematic. One should be aware that the 
results presented here cannot be considered completely conclusive as the structure is 
complicated and damage of varying levels was already present in the structure when 
training data were selected. What is certain though is that the features of interest in the 
SPC chart certainly correspond to events in the life of the structure that are likely to 
have induced changes. Furthermore, no significant deviations occur in the chart at 
points that cannot be associated with events likely to cause damage. The results are 
not completely conclusive because it is not possible to eliminate, on the information 
given, the possibility that other factors may have caused deviations in the residual. For 
example, a plausible reason for an alarm is that one of the tilt sensors was disturbed 
during the testing; however, a close examination of the tilt sensors shows that readings 
are continuous across the test period.  
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