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ABSTRACT1 
 

This paper presents a theoretical derivation and an experimental verification of a 
model-free method for identification of stiffness-related damages. The proposed 
method requires no parametric numerical model of the monitored structure, which 
obviates the need for initial model updating and fine tuning. The paper introduces the 
general methodology, including the inverse problem, focuses it on stiffness-related 
damages, and reports on an experimental verification. A 4-meter-long, 70-element truss 
steel structure made of a commercially available system of nodes and connecting tubes 
is used for that purpose. Damage is simulated by an intentional replacement of a 
structural element. 
 
 
INTRODUCTION 

 
The long-term motivation behind this research is the need for a practical SHM 
technique that could be used in black-box type monitoring systems. Real-world 
structures are large and complex. It is usually difficult to monitor them globally using a 
model-based approach [1-5], since such approaches require a parametric model of the 
monitored structure (like finite element models), and such models are in practice 
difficult to update accurately enough. A possible solution are pattern recognition 
methods, as they require no parametric numerical structural models [6,7]. However, 
such approaches are usually capable only of damage detection, even if sometimes they 
offer also limited damage localization possibilities via physical distribution of available 
sensors across the structure [8,9]. 

The model-free methodology [10] developed in this paper aims at addressing the 
mentioned deficiencies of model-based as well as pattern recognition methods:  
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1) The approach requires no parametric numerical model of the monitored 
structure. Thus, there is no need for preliminary model updating and tuning, 
which is a crucial and usually difficult step in model-based approaches. 

2) The approach uses a non-parametric model of the structure, which is directly 
based on experimentally measured quasi impulse responses of the monitored 
structure. Thus, the approach can offer damage localization and quantification, 
besides pure detection. An effective sensitivity analysis is also possible, so that 
quickly convergent second-order optimization methods can be used for 
effective damage identification. 

 
The task of damage identification is formulated in the form of an optimization problem 
of minimizing the discrepancy between the measured and the modeled time-domain 
structural responses. The virtual distortion method (VDM [11]) is used, as it allows the 
structure to be modeled in an essentially non-parametric way via a set of its 
experimentally obtained quasi impulse responses, reduced to the degrees of freedom 
(DOFs) related to the potential modification points. Structural modifications are 
modeled using certain pseudo loads that are imposed on the undamaged structure. Their 
effect on the structural response is expressed in the form of a convolution with the 
experimentally obtained quasi impulse responses of the unaffected structure. The 
pseudo loads that properly model given damage are found by solving certain linear 
integral equation. A related formulation in frequency domain can be found in [12]. 

The paper first introduces the general methodology, and then focuses it on 
stiffness-related damages. Finally, it reports on an experimental verification using a 
4-meter-long, 70-element steel truss structure made of a commercially available system 
of nodes and connecting tubes. Damage of an element is simulated by replacing it with 
an element of a similar weight but made of aluminum instead of steel. 

 
 

THE DIRECT PROBLEM – GENERAL METHODOLOGY 
 

Assume that the original intact structure satisfies the standard equation of motion: 
 

ሷܝۻ ୐ሺݐሻ ൅ ሶܝ۱ ୐ሺݐሻ ൅ ሻݐ୐ሺܝ۹ ൌ ሻ, (1)ݐሺ܎
 

where ܎ሺݐሻ is a given excitation vector. Assume also that structural modifications and 
damages can be quantified in terms of certain modifications to structural mass and 
stiffness matrices Δۻ  and Δ۹  respectively. As a result, the modified/damaged 
structure is assumed to satisfy the following equation of motion: 

 
ሺۻ ൅ Δۻሻܝሷ ሺݐሻ ൅ ሶܝ۱ ሺݐሻ ൅ ሺ۹ ൅ Δ۹ሻܝሺݐሻ ൌ ሻ, (2)ݐሺ܎

 
where ܝሺݐሻ is used to denote the response of the modified/damaged structure to the 
same excitation ܎ሺݐሻ. 

According to the basic idea of the virtual distortion method (VDM, [11]), the 
damages and modifications can be equivalently modeled by imposing a certain vector 
 ሻ of pseudo loads onto the original undamaged structure. By moving in (2) theݐ଴ሺܘ
modification terms to the right-hand side, one can obtain 
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ሷܝۻ ሺݐሻ ൅ ሶܝ۱ ሺݐሻ ൅ ሻݐሺܝ۹ ൌ ሻݐሺ܎ ൅ ሻ, (3)ݐ଴ሺܘ
 
where the pseudo load vector is implicitly defined as 

 
ሻݐ଴ሺܘ ൌ െΔܝۻሷ ሺݐሻ െ Δ۹ܝሺݐሻ. (4)

 
Exact impulse responses 

 
Notice that (3) is in fact the equation of motion of the original intact structure subjected 
to the pseudo load ܘ଴ሺݐሻ besides the testing excitation ܎ሺݐሻ. Therefore, the response 
 ሻ of the modified/damaged structure can be expressed in terms of the impulseݐሺܝ
response matrices ۰଴ሺݐሻ and ۰ሷ ଴ሺݐሻ of the original undamaged structure as 

 

ሻݐሺܝ ൌ ሻݐ୐ሺܝ ൅ ׬ ۰ሺݐ െ ߬ሻܘ଴ሺݐሻd߬
௧
଴ ൌ ሻݐ୐ሺܝ ൅ ሺऌ଴ܘ଴ሻሺݐሻ, 

ሷܝ ሺݐሻ ൌ ሷܝ ୐ሺݐሻ ൅ ׬ ۰ሷ ሺݐ െ ߬ሻܘ଴ሺݐሻd߬
௧
଴ ൌ ሷܝ ୐ሺݐሻ ൅ ൫ऌሷ ଴ܘ଴൯ሺݐሻ, 

(5)

 
where the matrices ۰଴ሺݐሻ  and ۰ሷ ଴ሺݐሻ  collect respectively the displacement and 
acceleration impulse responses of the original undamaged structure. Notice that the 
latter includes an impulsive component at time ݐ ൌ 0 in all its entries corresponding to 
collocated pairs of accelerometers and excitation DOFs. The convolutions with the 
impulse response matrices can be expressed also in a more concise way using the 

corresponding matrix integral operators ऌ0 and ऌሷ
0
. 

Substitution of (5) into (4) yields 
 

଴ܘ ൅ ൫Δ۹ऌ଴ ൅ Δۻऌሷ ଴൯ܘ଴ ൌ െΔܝۻሷ ୐ െ Δ۹ܝ୐, (6)
 
which is a linear integral equation of the Volterra type. If the impulsive components in 
the acceleration impulse response matrix are taken into account, it can be shown that 
equation (6) is of the second kind and thus uniquely solvable [13], provided the matrix 
൅ۻ Δۻ is positive definite. As the original mass matrix ۻ can be assumed to be 
always positive definite, (6) is uniquely solvable for all mass modifications that are 
small enough. Notice that the impulse responses need to be measured only locally, that 
is only in the DOFs that are related to the potential modifications/damages, since in 
other DOFs the pseudo loads vanish, which can be easily seen in (6). 

Given the modifications and solved (6), the resulting pseudo load vector is 
substituted into (5) to obtain the response of the modified/damaged structure. 
 
Experimental quasi impulse responses 

 
The solution outlined so far assumes that the structural impulse responses are measured 
and available. However, exact impulse responses are hardly available in practice: one 
can measure only responses to quasi-impulsive excitations that last several time steps. 
Two solutions are possible: (i) either the measured responses are deconvolved with 
respect to the actually applied quasi-impulsive excitations in order to obtain the exact 
impulse responses or (ii) the measured responses are directly used in computations. The 
first approach requires performing a separate ill-conditioned deconvolution for each 
pair of a quasi-impulsive excitation and the corresponding response. This is avoided by 
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the second approach, which implicitly embeds the deconvolutions in a modified 
version of (6). The pseudo loads are expressed in the form of a convolution of the 
actually applied quasi-impulsive excitations ݄௜ሺݐሻ, which all have to satisfy ݄௜ሺݐሻ ൌ 0 
for ݐ ൑ 0, with certain unknown functions ݌௜ሺݐሻ, 

 

௜݌
଴ሺtሻ ൌ ሺ݄௜ ∗ ሻݐ௜ሻሺ݌ ൌ ׬ ݄௜ሺݐ െ ߬ሻ݌௜ሺ߬ሻd߬

௧
଴ , (7)

 
where ݅  indexes all the DOFs related to the considered modifications/damages. 
Equation (7) is collected for all the involved DOFs and stated in the operator notation as 

 
଴ܘ ൌ ऒ(8) ,ܘ

 
where ऒ denotes the respective diagonal matrix convolution operator. 

Substitution of (8) into (5) and (6) yields 
 

ܝ ൌ ୐ܝ ൅ ऌܘ ሷܝ ൌ ሷܝ ୐ ൅ ऌሷ ܘ (9)
 

and 
 

൫ऒ ൅ Δ۹ऌ ൅ Δۻऌሷ ൯ܘ ൌ െΔܝۻሷ ୐ െ Δ۹ܝ୐, (10)
 
where ऌ ൌ ऒऌ଴ and ऌሷ ൌ ऒऌሷ ଴ are the matrix integral operators that correspond to 
the convolutions with the experimentally measured responses to the quasi-impulsive 
excitations ݄௜ሺݐሻ. 

 
 

THE DIRECT PROBLEM – STIFFNESS-RELATED DAMAGES 
 

In case when the modeled damages affect only the stiffness of the involved elements, 
and are thus quantified by Δ۹ only, the derived formulas can be simplified into 

 
ሺऒ ൅ Δ۹ऌሻܘ ൌ െΔ۹ܝ୐ ܝ ൌ ୐ܝ ൅ ऌܘ. (11)

 
 
Required data and computations 

 
The model-free approach described here uses a local non-parametric model of the 
undamaged structure that consists of its (i) the matrix ۰ሺݐሻ of its structural quasi 
impulse responses, and (ii) the structural response ܝ୐ሺݐሻ to the testing excitation ܎ሺݐሻ. 

These characteristics can be measured experimentally prior to modeling of the 
damages. According to (10) or (11, left), the pseudo loads vanish in the DOFs that are 
not directly related to the damages. As a result, the responses that constitute the model 
need to be measured only by the sensors intended for identification and in the DOFs 
related to potential damages, which can form only a small subset of all structural DOFs. 
As a result, full instrumentation of the involved structure is not necessary, which makes 
experimental measurements more feasible.  
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Given such a model of the unmodified structure and a modification defined by Δ۹, 
the response ܝሺݐሻ  of the modified structure to the same testing excitation ܎ሺݐሻ  is 
computed in two steps: (i) the equivalent convolution functions ܘሺݐሻ are found by 
solving (11,left) and (ii) the response is computed by (11,right). Notice that all these 
computations are performed based directly on experimentally measured data, so that 
there is no need to build and update a parametric numerical model of neither the 
unmodified nor the modified structure. 

 
 

THE INVERSE PROBLEM 
 

The inverse problem of identification of stiffness-related damages is formulated here as 
an optimization problem of minimizing the mean square discrepancy between the 
measured response ܝ୑ሺݐሻ and the modeled response ܝሺݐሻ of the modified structure, 

 

ሺΔ۹ሻܨ ൌ ଵ

ଶ
׬ ݐሻ‖ଶdݐሺ܌‖
்
଴ ൌ ଵ

ଶ
,܌〉 (12) ,〈܌

 

where 〈∙,∙〉 is the scalar product, ܶ is the length of the considered time interval and 
 

ሻݐሺ܌ ൌ ሻݐ୑ሺܝ െ ሻ, (13)ݐሺܝ
 

and which is minimized with respect to a given set of parameters that define the 
damage Δ۹.  

The method of adjoint variable [14] can be used for fast sensitivity analysis. The 
derivative of ܨ with respect to the ߙth damage parameter is 

 
பி

பఓഀ
ൌ 〈ૃ, Δ۹ఈ(14) ,〈ܝ

 

where Δ۹ఈ denotes the derivative of Δ۹ with respect to the ߙth optimization variable 
and ૃሺݐሻ is the vector of the adjoint variables, which is computed as the solution to the 
following integral equation: 

 

ሺऒ∗ ൅ ऌ∗Δ۹ሻૃ ൌ ऌ∗(15) ,܌
 

where the superscript ∗ denotes the adjoint operator. In a similar way, see e.g. [10], the 
second order derivative of the objective function can be computed as 

 

பమி

பఓഀ பఓഁ
ൌ ,ఈܝ〉 〈ఉܝ ൅ 〈ૃ, Δ۹ఈܝఉ ൅ Δ۹ఉܝఈ ൅ Δ۹ఈఉ(16) ,〈ܝ

 

where the derivatives of the response are computed by differentiating (12), 
 

ሺऒ ൅ Δ۹ऌሻܘఈ ൌ െΔ۹ఈܝ                             ܝఈ ൌ ऌܘఈ. (17)
 

Given the response derivatives, the first derivative of the objective function can be 
computed for the purpose of verification of (14) also as 

 

பி

பఓഀ
ൌ െ〈܌, ఈ〉. (18)ܝ
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EXPERIMENTAL VERIFICATION 
 
The setup 
 
A 3D steel truss structure is used in the experimental verification. It is of 4 meter length, 
32 kg weight, consists of 70 elements and 26 nodes, see Figure 1. A damage of the 
marked element (weight 0.375 kg and axial stiffness EA=13,850 kN) is simulated by 
replacing it with an aluminum element of a comparable weight, but significantly 
reduced stiffness (weight 0.300 kg, axial stiffness EA=9,270 kN). A modal hammer is 
used to generate the quasi impulse response matrix ۰ሺݐሻ and the testing excitation ܎ሺݐሻ, 
which is applied in the z-direction in the node shown in Figure 1. The discrepancy 
function ܌ሺݐሻ is constructed by comparing the displacement responses measured in 
z-direction in another node, see Figure 1. 
 

Figure 1. The 3D truss structure used for experimental verification. 
 
 
Identification results 

 
Figure 2 plots the objective function in dependence on the axial stiffness of the 
damaged element. In the computations, the mass of the modified element is assumed to 
remain the same. The minimum of the function is found at 9,560 kN. The identification 
result slightly overestimates the actual axial stiffness of the modified element 
(9,270 kN), see Figure 2. This is consistent with the fact that the mass reduction is 
neglected in computations: the measured and modeled basic vibration periods can be 
fitted only if a surplus mass is countered with an surplus increase of stiffness.  

Figure 3 compares the measured responses of the original and the damaged 
structures, ܝ୐ሺݐሻ  and ܝ୑ሺݐሻ , with the modeled response ܝሺݐሻ  at the identified 
optimum value of axial stiffness of the damaged element. 

Since there is only one damage parameter, the responses are fitted mainly based on 
the basic vibration period. Figure 4 compares the responses modeled for different levels 
of axial stiffness of the affected element in order to demonstrate the effect of damage on 
the basic vibration period. Notice that the assumed level of the axial stiffness affects not 
only the vibration period, but also its amplitude and/or damping ratio. If it is an actual 
effect or just a numerical artifact remains a subject of ongoing research. 
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axial stiffness AE [MN] 

 
Figure 2. The objective function. 

 
 

 
 

Figure 3. Measured response of the undamaged structure, measured response of the damaged structure, 
and the optimally modeled response. 
 
 

 
 

Figure 4. Responses modeled for different assumed values of the axial stiffness of the involved element 
(1,385 kN is the basic measured response ࢛௅ሺݐሻ, which is modified by pseudo loads). 
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CONCLUSION 
 

This paper develops and experimentally verifies a model-free approach to 
identification of stiffness-related damages. The approach is based on the virtual 
distortion method (VDM), and uses an essentially non-parametric purely experimental 
model of the monitored structure. No parametric numerical model, such as a FE model, 
is required, which in many application is an advantage as allows to avoid the 
error-prone stage of model updating. 
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