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ABSTRACT 
 

Evolutionary algorithms are suitable to solve damage identification problems in a 
multiobjective context. However, the performance of these methods can deteriorate 
quickly with increasing noise intensities originating numerous uncertainties. In this 
work, a statistic structural damage detection method formulated in a multiobjective 
context is proposed, taking into account the uncertainties existing. The presented 
method is verified by a number of simulated damage scenarios. The effects of noise 
on damage detection are investigated. 

 
 

INTRODUCTION 
 

Model updating methods based on structural vibration data have been developed 
and applied to identify structural damage in civil engineering. Structural damage is 
located and quantified by minimizing the response discrepancies between a finite 
element (FE) model and its corresponding structure before and after damage [1, 2]. To 
do this, an objective or error function dependent on the agreement between numerical 
predictions and experimental data is defined and optimized.  

However, in most real-world problems the relative importance among objectives 
is not generally known until the system’s best capabilities are determined and trade-
offs between the objectives are fully understood. Furthermore, objectives under 
consideration come into conflict with each other, and optimizing a particular solution 
with respect to a single objective can lead to unacceptable results regarding the other 
objectives [3, 4]. With the purpose of improving the robustness and performance of 
the procedure, all the objectives must be treated as a whole, instead of optimizing 
them independently. Evolutionary algorithms are a class of stochastic search methods 
that have been found to be very efficient and effective in solving complex 
multiobjective problems where conventional optimization tools fail to work well. 
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On the other hand, most of the damage identification problems are presented 
under the effects of different degrees of uncertainties, known as noise. This noise has 
to be understood as the multiple and uncontrollable events that are able to twist the 
result of an analysis, degrading the algorithm’s performance with a premature 
convergence to sub-optimal solutions. Therefore, the performance of MOEA 
deteriorates quickly with increasing noise intensities. Besides this, the design variables 
may change after optimization, and the quality of the optimal solution should be 
robust against environmental changes or deviations from the optimal point [5]. 

A strategy is proposed in this work to improve the performance and robustness of 
the damage detection methods in noisy problems. In this strategy, solutions should 
still work satisfactorily when the design variables change slightly. 
 
 
OBJECTIVE FUNCTIONS 
 

The objective functions selected for the FE model updating method have to 
reflect the deviation between the numerical prediction and the real behavior of the 
structure. Therefore, they should be formulated in terms of the discrepancy between 
FE and experimental quantities. In this work, due to their high performance, the 
following functions have been chosen [6]: 
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where { j} is the j-th mode shape, λj=(2πfj)2 where fj is the eigenfrequency 
corresponding to j-th mode and {Fj} is the flexibility vector, collecting the diagonal 
terms of the flexibility matrix corresponding to the j-th mode; MAC is the modal 
assurance criterion [7] and the subscript num and exp are  respectively referred to 
numerical and experimental values. Both functions take values between zero and one. 
 
Noise 
 

Ideally, evolutionary algorithms should work on the expected objective functions 
and not be misled due to the presence of noise. In some works [4], noise has been 
incorporated as an additive perturbation to the original objective functions, with the 
purpose of including in this perturbation all possible kind of noise. 

On the other hand, in other works [1] noise has also been incorporated affecting 
directly to the so called elemental stiffness parameter, so that noise appears not only 
in the measured data but also in the FE model. In order to study this, noise has been 
introduced as follows: 
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where K is the stiffness of the model and χ1 represent the random noise with zero 
mean and variance σ	2. Finally, in this study, quasi-experimental data have been used, 
since the experimental data are originated numerically, so the noise has also been 
introduced in the quasi-experimental frequencies (λexp) as follows: 
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EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION 
 

Since objectives under consideration come into conflict with each other, instead a 
unique solution there will be a set of optimal solutions, known as Pareto-optimal 
solutions. In this case, the notion of optimality is not so obvious since does not exist 
any solution that minimizes all individual objectives simultaneously. 

Evolutionary algorithms, such as genetic algorithms (GA), have been 
demonstrated to be very powerful and generally applicable not only to solve complex 
single objective problems, but also multiobjective problems, since in a single run of 
the algorithm several points of the Pareto-optimal set are found. 

GA basic procedure is to randomly initialize a population of solutions and then to 
improve the solutions through repetitive operations of crossover, mutation and 
inversion. This theory was developed in the engineering area by Goldberg’s work [8]. 

 
Modified Non-dominated Sorting Genetic Algorithm II 
 

In this work, the Modified Non-dominated Sorting Genetic Algorithm (MNSGA-
II) algorithm has been used. This algorithm is an alternative to NSGA-II, proposed by 
Babbar et al [8], with the purpose of improving some of its deficiencies. The main 
idea is to introduce explicit averaging into NSGA-II and to modify the non-dominated 
sorting procedure to allow seemingly dominated solutions into the first non-dominated 
front.  

Although explicit averaging can reduce the uncertainty in the selection process, it 
is not feasible to use large number of samples. Since the number of samples is limited, 
it is inevitable that the first non-dominated front will comprise of both dominated and 
non-dominated solutions. To prevent the loss of potentially useful solutions, Babbar et 
al [8] suggested a clustering mechanism to induce solutions from the inferior non-
dominated fronts into the first layer. This mechanism works by comparing the 
distances between solutions from the first non-dominated front and the other fronts. 

A higher ranked solution Fa is re-assigned to the first non-dominated front if the 
following criterion is satisfied for any arbitrary objective, 
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where fb,i is the i-th objective of solution Fb from the first non-dominated front, va,i is 
the variance of Fa updated during the averaging process and k is the neighborhood 
restriction factor. The rationale is that it is very likely for a perceived inferior solution 
located in close proximity to a perceived non-dominated solution in the objective 
space to be a true non-dominated solution. 

By assigning the first rank to these otherwise higher ranked solutions, truly good 
solutions are given the reprieve necessary to survive the selection process. The 
number of solutions present in the first non-dominated front is highly dependent on 
the setting of k; augmenting selection pressure while reducing k. MNSGAII applies a 
simulated annealing inspired adaptive scheme that reduces k over generations. The 
equation that governs the behavior of k is given by 
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where C determines the largest setting of k and β controls the rate at which k reduces 
with t. Initially, k is large and more dominated solutions will be accepted into first 
non-dominated front. The rationale is that the reliability of the solution will increase 
with time through explicit averaging, allowing the algorithm to sort the solutions into 
the different layers of non-dominated fronts with a greater degree of certainty. At the 
end of the evolutionary process, the clustering mechanism is applied once again, this 
time to remove solutions that are significantly different from the other archived 
solutions. 
 
Robustness 
 

Working only with expected objective functions, solutions with high objective 
variance might be considered as robust since deviations from the true objective 
functions might cancel one with other in the target point. In this sense, the robustness 
of the method might be improved considerably by including, additionally, objective 
functions depending on variance as separate optimization criteria. In this way, the 
problem to be solved would be a four-objective optimization problem, in which the 
other two objective functions are selected from the following: 
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where σF1 and σF2 are the standard deviations obtained from the objective functions 
values at the sampling points used to get the averaged objective functions, and σഥ  is 
the average of the standard deviations calculated for each one of the design variables j 
at the sampling points. 
 
 
PROBABILITY OF DAMAGE EXISTENCE (PDE) 
 

The PDE can be estimated from the statistical distributions of the stiffness 
parameter of the undamaged and damaged state [1]. The basic idea is to compute the 
probability of an elemental stiffness parameter at a confidence level, defining the 
interval of the healthy stiffness parameter, Ω(αi,μ), so that the probability of αi 
contained within the interval is μ: 
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where LΩ is the lower bound of the interval Ω(αi,μ), which depends on the required 
confidence level. In this study, μ is set to 95%, thus LΩ	ൌ	Eሺαi) – 1.645*σ(αi), which 
means that there is a probability of 95% that the healthy stiffness parameter falls in the 
range of [Eሺαi) – 1.645*σ(αi), ∞). 

In the same way, an interval can be defined for the stiffness parameter of the 
damaged state (άi). Thus, the PDE is defined as that of άi not within the 95% 
confidence healthy interval Ω(αi,0.95). Thus, the PDE of an element i is: 
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PDE is a value between 0 and 1. It is apparent that if the PDE is close to 1, the 
damage of the element is most likely; otherwise, if the PDE is close to 0, the damage 
of the element is very unlikely. 

 
 

NUMERICAL SIMULATION STUDY 
 

In order to investigate the performance of the methodology proposed here, 
several numerical simulations on a simply supported beam have been made. In all the 
studies performed, a crossover probability of 0.8 and a mutation probability of 0.01 
have been assumed for the GA. In the same way, a binary encoding has been used for 
the chromosomes of each individual of the population. Each design variable or 
damage variable di є [0,1] has been coded into a 3-bit binary number obtaining a 
resolution of 0.125, which is acceptable for a suitable estimation of damage. Once the 
optimal chromosome has been found, the damage values are obtained through the 
inverse of the decoded values. 

For all cases, the exact solution is compared with the solution by the proposed 
multi-objective approach. In order to decrease the influence of random effects, 5 
independent runs were performed per test problem to produce the mean ± one sample 
standard deviation plot. 

The problem for a comparative investigation consists in identifying damage for a 
simply supported concrete beam of length L=6 m and rectangular cross section b x h = 
0.25 m x 0.2 m. For numerical analysis purposes the beam was divided into 10 two-
dimensional beam elements, resulting in a chromosome of 30 bits length. The beam 
was assumed to have a Young´s modulus E of 30 GPa and a density  of 2500 kg/m3. 

The beam was subjected to a simple (Figure 1) and a multiple simulated damage 
scenario (Figure 2) of complex identification. The “measured” dynamic responses of 
the beam before and after damage were generated previously. The baseline finite 
element model of the beam was created using Euler-Bernoulli planar elements with 
two degrees of freedom per node. 

 

 
Figure 1. Simple damage scenario for the 

numerical beam. 

 
Figure 2. Multiple damage scenario for the 

numerical beam. 
 
Since the present example is a numerical simulation, the baseline values are 

perfectly known and, therefore, the possible effect of poorly estimated baseline values 
is removed from this study. Any parameter estimation differing from the baseline 
value might be associated with damage. 

To be more consistent with the field test conditions and to check the robustness of 
the proposed procedures, only the four lowest vibration modes were considered. 
Furthermore, two different levels of noise (5% and 20%) were included according 
with Eq. (3) and (4).  

As commented above, two damage scenarios were tested, both four-objective 
problems (Eq. (1), (2), (7) and (8)) solved with MNSGA-II method also described 
above. Figures 3 and 4 show the damage distribution for the beam problem when 
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solved with the chosen criteria considering the different levels of noise. The results 
shown are the average of the 5 optimum solutions for the 5 runs carried out. 

Results demonstrate that the method is quite robust even with low damages and 
important intensities of noise, which makes the damage detection more accurate. 

Figures 4 and 6 show the probability of damage existence (PDE) for the different 
elements and for levels of noise 5% and 15% using the procedure already commented. 

 

 
 

Figure 3. Damage distribution (simple scenario). 
 

 
 

Figure 4. Damage distribution (multiple scenario). 
 

 
 

Figure 5. Probability of damage existence (simple scenario). 
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Figure 6. Probability of damage existence (multiple scenario). 
 
CONCLUSIONS 
 

A statistical multiobjective structural damage detection algorithm is developed in 
this paper. The approach has been focused in the performance and robustness of the 
damage identification procedure. The uncertainties existing in the structural model 
and measured structural modal parameters have been taken into account. The 
probability of damage existence has been obtained. The presented method has been 
verified by a numerical study on a simple supported beam with different levels of 
noise. 
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