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ABSTRACT 
 
An online health diagnosis technique was established for in-service engineering 

structures. Locally canvassing the modulation on acoustic-ultrasonic (AU) waves by 
structural damage (e.g., wave scattering, mode conversion and energy dissipation), this 
technique enables real-time quantitative evaluation of structural damage or 
multi-damage. It comprehensively integrates AU wave generation, signal acquisition, 
central controlling, signal processing, data fusion and results presentation. 
Identification results are presented in pixelated images with the assistance of an 
imaging algorithm, facilitating visualization of damage and depiction of overall 
structural health status in a quantitative, rapid and automatic manner. An active sensor 
network, comprising a number of standardized piezoelectric sensing units, was 
developed to supplement this technique, offering improved flexibility to accommodate 
structures of different geometries, desirable redundancy and enhanced reliability when 
operated in noisy environment. The effectiveness of the technique was validated 
experimentally using different damage scenarios. 
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INTRODUCTION 
 
Intensive research on structural health monitoring (SHM) has been conducted for 

more than two decades since its inaugural, leading to a variety of SHM techniques and 
methodologies readily available for different engineering structures [1], such as aircraft, 
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high-speed trains and civil infrastructure. Among different SHM techniques, those 
replying on acoustic-ultrasonic (AU) wave propagation have shown great potential in 
achieving a reasonable compromise among resolution, practicality and detectability. 
AU waves offer a number of merits including the ability to interrogate a large area 
using a few transducers, the capacity to access hidden components, the high sensitivity 
to different types of damage and the potential to be used for online health monitoring. 

Hitherto, the major research efforts in this field are focused on the development of 
various methodologies and principles, signal processing and interpretation approaches, 
signal feature extraction and detection algorithms, with natures of theoretical 
derivation, numerical simulation or simple testing under the laboratorial environment. 
Driven by the recent advances in active sensor network, multi-channel data acquisition, 
real-time signal processing and data fusion, there is an obvious increase in the interest 
in developing cost-effective SHM techniques and systems towards real-world 
engineering applications [2-6]. 

Residing on the endeavors of the authors in the past decade, an online diagnosis 
technique based on AU wave propagation was developed, and realized through a 
self-developed system. The system comprehensively integrates AU wave generation 
modulus, signal acquisition modulus, central controlling and past-processing modulus 
(including signal processing, data fusion and results presentation). In-house software 
was coded to fulfill all the functions for real-time diagnosis. An active de-centralized 
sensor network was developed, comprising a number of miniaturized and standardized 
piezoelectric sensing units. In conjunction with use of the active sensor network, the 
system claims improved flexibility to accommodate structures of different geometric 
features, desirable redundancy and enhanced reliability when manipulated in noisy 
measurement environment. Diagnostic results can be presented in pixelated images, 
enabling visualization of damage and depiction of overall structural health status in a 
quantitative, rapid and automatic manner. Validation of the online diagnosis system 
was conducted using different damage scenarios. 

 
 

SYSTEM DESIGN 
 

A virtual instrument technique based on PXI (PCI extension for instrument) 
platform was adopted for the system design and development. The hardware of the 
system consists of three basic components: arbitrary waveform generation with 
high-power amplifier, high-performance multi-channel data acquisition and active 
sensor network. Three parts were integrated through the PXI bus, and controlled by 
in-house software which was developed using NI LabVIEW®. The software fulfills all 
the major functions for real-time diagnosis, including management of hardware, 
man-machine interface (MMI), signal processing, damage detection, and presentation 
of diagnostic results. The basic frames of the hardware and software development are 
shown in Figs. 1(a) and (b), respectively. 

 
 
 
 
 
 

2



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

(a)                                                                            (b) 
 

Figure 1. Basic frames for developing (a) hardware and (b) software of the system. 
 

 
DE-CENTRALIZED SENSING UNIT 

 
A single sensor, whatever the type, performs local acquisition of signals, and it 

generally tends to provide inadequate information for evaluating the overall structural 
integrity. A series of spatially distributed sensors is often networked to configure a 
sensor network. By ‘communicating’ with each other, the sensors in the network 
certainly provide more information. With sensors acting cooperatively, a sensor 
network provides desirable redundancy and reliability of signal acquisition. In this 
system, a sensor network technique, based on a de-centralized sensing philosophy, was 
developed. A single circular piezoelectric lead zirconate titanate (PZT) element (with 
different radii ranging from 5 to 10 mm) was mounted a polyimide film through printed 
circuit, as seen in Fig. 2. To minimise the impact of embedded sensors on the integrity 
of the inspected structure, each wafer is only 0.2 mm in thickness, contributing little 
weight and volume penalty. 

As an individual functional unit, each sensing unit can be pre-fabricated, stored, 
transported and finally integrated into a large-scale sensor network. Diverse active 
sensor networks can thus be configured by flexibly arranging the standardized sensing 
units of different numbers in strategic locations. The sensor network can be either 
surface-mounted on or embedded in the structures under monitoring. 
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Figure 2. A De-centralized sensing unit. 

 
Allowing for the fact that the number of sensors in a strategically configured sensor 

network is much greater than that of the signal acquisition channels in a data acquisition 
system, a time division multiplexing method was introduced. As shown in Fig. 3, all the 
sensors in the sensor network are connected with a switch array, as a supplementary 
component to the system, which links the sensor network with the system. Through the 
switch array, once a particular sensing unit is selected as actuator, the others are acting 
as the sensors to capture the signals. With such a unit, only two acquisition channels are 
of necessity in the system. 

 
 
 
 
 
 
 
 

 
Figure 3. Switch array linking the sensor network to system. 

 
 

SUBSYSTEM DESIGN AND INTEGRATION 
 

As shown in Fig. 1, the system involves a number of subsystems through the 
man-machine interface, mainly including arbitrary waveform generation, data 
acquisition, channel control, damage detection and imaging. 
 
Arbitrary Waveform Generation Subsystem 

 
In a working frequency range of 1~2.5 MHz, the diagnostic waves of different 

waveforms and frequencies can be customized via the arbitrary waveform generation 
subsystem to entertain different applications. A narrow band waveform can be helpful 
to excite a single wave mode in a thin plate structure, while a pulse waveform is 
suitable for a bulky structure. For the convenience, a number of frequently used 
waveforms have been pre-stored in the subsystem. The interface of the waveform 
generation subsystem is shown in Fig. 4 (a). 
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Multi-channel Data Acquisition (DAQ) Subsystem 
 
Via the interface shown in Fig. 4 (b), the multi-channel DAQ subsystem offers 

eight independent channels at a sampling rate of 1~60 MHz for each. Frequency 
analysis functions and low pass filters were integrated in the DAQ. 

 
Switch Controller Subsystem 

 
This subsystem was designed to select the sensors in a sensor network to flexibly 

configure a desired monitoring path, with the interface shown in Fig. 4 (c). It provides a 
maximum capacity of connecting 32 sensing units in a sensor network with the signal 
generation and DAQ subsystems. 

 
Damage Detection and Imaging Subsystem 

 
Based on the captured and subsequently processed signals, damage in the structures 

under inspection can be characterized quantitatively (including number, individual 
location, shape and size). Different detection algorithms were developed for different 
sensing paths rendered by the active sensor network [7-10]. In particular, for a pulse-echo 
sensing path, the field value at pixel S(i, j) of the image is defined as 
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where  An  is a weight coefficient to balance different signals;  fn  the damage-scattered 
signals; v the group velocity of the concerned wave mode; a

ijnR  and s
ijnR  the distances 

from S(i, j) to the actuator and sensor, respectively; a
nx , a

ny , s
nx  and s

ny  the coordinates 

of actuator and sensor forming the nth path;  fv  the resolution of the image. On the other 
hand, for a pith-catch sensing path, the field value at pixel S(i, j) is defined as 
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where rn is the difference between the signals before and after the occurrence of 
damage; p a weight coefficient to compensate for the propagation attenuation. With the 
detection and imaging subsystem, the identification results can be presented in 
pixelated images, enabling visualization of damage and depiction of overall structural 
health status, as an example shown in Fig. 4(d). 

 
Subsystem Integration 

 
Integrating all the above subsystems and software, an online health diagnosis 

system was developed. It automatically scans the structures via all available monitoring 
paths in the sensor network, processes and analyzes captured signals for real-time 
system health diagnosis. The final diagnostic results are displayed in a user-friendly 
interface (UFI), either two- or three-dimensionally. The flowchart for operation of the 
system is show in Fig. 5, and the developed system and UFI in Fig. 6. 
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(a)                                                        (b) 
 

 
 

 
 
 
 
 

(c)                                                                   (d) 
Figure 4. Interfaces for (a) arbitrary waveform generation; (b) multi-channel DAQ; (c) switch 
controller; and (d) damage imaging subsystems. 

 
VALIDATION 

 
Two typical engineering structures, an aluminum plate and a steel tube, were used 

for system validation. The plate (600mm×600mm×2mm) was surface-mounted with 
an active sensor network comprising eight sensing units, offering 28 monitoring paths. 
The tube (1000 mm in length, 108 mm in radius and 4 mm in thickness) was 
surface-attached with a sensor network with twelve sensing units, rendering 66 paths. 
Figure 7 exhibits these two specimens with attached sensor networks. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Operation flowchart of the system. 
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Figure 6. The online diagnosis system (left: integrated system; right: UFI). 
 

Hanning window-modulated five-peak sinusoidal toneburst at 200 kHz and 320 
kHz were generated by the generation subsystem to excite S0 wave mode for two 
structures, respectively. Added masses were used to simulated damage in two 
structures, and the diagnostic results are shown in Fig. 8, clearly indicating the location 
and approximate size of individual damage. 

 
 
 
 
 
 
 
 
 
 

Figure 7. Specimens for system validation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Diagnostic results (left: for plate; right: for tube). 
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CONCLUSIONS 
 
An online health diagnosis system was developed, taking advantage of propagation 

of acoustic-ultrasonic (AU) waves. Supported by in-house software and used in 
conjunction with an active sensor network, the system is able to real-time monitor the 
health status of a structure under surveillance. Validation of this system on typical plate 
and tube structures has demonstrated the capacity of the system in providing real-time 
structural health monitoring. 
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