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ABSTRACT 
 

In this paper, we propose an intrinsic error estimator for the data fusion of 
NDT techniques used to identify the material and damage properties of concrete 
structures. This error estimator is chosen based on the global distribution of the data 
fusion in the space of the identified material properties. The main idea is to evaluate 
the accuracy of the result in estimating the gap between the most and the worst 
likely solutions. This error estimator is applied to synthetic data depending on the 
parameters of the data fusion such as the regression laws that linked the material 
properties to the NDT measurements. 

This work is part of the C2D2-ACDC project that aims at methodology transfer 
from five research laboratories, LMA, LMDC, IFFSTAR, GhyMaC and IEMN to 
industrial partners, EDF and SETRA 
 
 
INTRODUCTION 
 

Non-destructive testing (NDT) techniques are mainly used in order to obtain 
relevant information about material properties and damage states of concrete 
structures. Nevertheless, the sensivity of these NDT techniques to many unknowns 
of the material parameters and to the experimental conditions is a major issue that 
makes difficult to extract a reliable and accurate diagnosis. In order to overcome 
those limitations a first step is to combine the measurements from multiple 
techniques as proposed in 
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[1, 2, 3]. In [4], a method is proposed to take into account the variability of measure-
ments, and to evaluate the relevance of the NDT techniques using statistical analysis.
This method aims at enhancing the diagnosis quality of RC structures.

In this process, we proposed a data fusion methodology that uses multiple NDT
techniques [5]. This methodology is based on the possibility theory and allows to
post-process different kinds of information from different NDT techniques having
some uncertainties involved. In that way, the complementarity of the NDT tech-
niques is used and previous works showed significant improvement in the estimation
of mechanical and damage properties such as the compressive strength [6]. Until
now, destructive testing has been used in order to evaluate the reliability of such
results, but this testing should be reduced or avoided in order to obtain industrial
applications. At this point, the current issue is to define an intrinsic error estimator
associated with the data fusion in order to enhance the diagnosis quality and the reli-
ability of the results.

DATA FUSION PROCESS

Relationship between the observations and the indicators

The principle of this method is to consider simplified relationships between the ma-
terial properties, called the indicators, and the NDT measurements called the obser-
vations. Although the parameters of these relationships are modified with the dif-
ferent compositions of concrete, we then assume that the convergence of the NDT
techniques associated with some specific material properties allows to update these
relationships and to obtain an adequate result with the inspected concrete. An initial
database is therefore used to evaluate the indicators and this database is then updated
in order to obtain the right estimation of the indicators.

The data fusion process we implemented is precisely described in [5] and is based
on the possibility theory. For each of the observations, we expect a relationship be-
tween this observation and the whole indicators. Until now, we have chosen linear
functions based on some experimental regression laws but there is no restriction to
implement more complex modeling. Ultrasound velocity, radar amplitudes and fre-
quencies, resistivity and electrical capacity of the concrete compose the observations.
The relationship between the ith observation and the indicators (Ik)1≤k≤m is expressed
in eq. (1) and illustrated for the ultrasound velocity , vUS, as a function of S and P
respectively the saturation rate and the porosity of the concrete :

∀ 1≤ i≤ p , Oi =
m

∑
i=1

ai
kIk, vUS = 2.9350×S−58.179×P+2736.2 (1)

Data fusion process

Let’s now consider the measurement case (Omes
i )1≤i≤m associated with the (Oi)1≤i≤m

observations looking for the (Ik)1≤k≤p indicators. For each of the observations, a pos-
sibility distribution is obtained using the relationship between the observations and
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the indicators. For a simpler illustration, we only consider a two-indicators identifi-
cation, I1 and I2, using from three to six observations. In that case, the distribution of
the ith observation is associated with the line di in the indicator plan obtained by the
following equation :

di : Omes
i −ai

1I1−ai
2I2 = 0⇔ di : Omes

i − cos
(
β

i
1
)

I1− sin
(
β

i
2
)

I2 = 0 (2)

The measurement uncertainties are then introduced using a trapezoidal evolution de-
pending on the variability of the corresponding measurement technique as defined in
[4] and noted σ.

Figure 1: Illustration of an observation distribution π(Omes
i ) in the indicator plane.

π(Omes
i ) =


1 i f Omes

i − cos(βk) I1− sin(βk) I2 ≤±0.2σ

1− γσ i f Omes
i − cos(βk) I1− sin(βk) I2 ≤±2.48σ

0 elsewhere

The data fusion process now consists in combining all the distributions of the obser-
vations using an operator such as :

π(S)=
(
1−α

2) max
1≤i≤m

[tiπ(Omes
i )]+α

2 min
[

min
1≤i≤m

[1− ti + tiπ(Omes
i )] , max

1≤i≤m
[π(Omes

i )]

]
π(S) is the fusioned distribution in the indicator plane and this distribution is nor-
malized. The solution

(
I0
1 , I

0
2
)

is then obtained by the condition π
(
I0
1 , I

0
2
)
= 1. Lastly,

(ti)1≤i≤m corresponds to the reliability of the ith observation computed with the re-
gression coefficient of the relationship between the ith-observation and the indicators.
α is the mean value of all the (ti)1≤i≤m.

ERROR ESTIMATOR

Issue

We consider two different cases associated with two different relative positions of
the observations. The first case shown in figure 2 corresponds to a close-observations
configuration. The second case shown in figure 3 corresponds to a spaced-observations
configuration. For these both cases, we consider the reference solution associated
with the three converging orange lines. Adding some disturbances to one of the ob-
servation for each case, the green lines, we note an important change of the data
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fusion shape of the second case compared to the shape of the reference solution. At
the opposite, the data fusion shape of the second case is similar to the shape of the
reference solution. Lastly, although the reference and the disturbed distributions of
the first case are similar, the gap between their identified indicator values is larger
than the gap between the identified indicator values of the second case. From these

Figure 2: Comparison between the reference and the noisy solutions for the close-
observations configuration.

Figure 3: Comparison between the reference and the noisy solutions for the spaced-
observations configuration.

results, we firstly propose to choose the observations from the database, based mainly
on their relative positions. This choice is related to the evolution of the indicator er-
rors as a function of the observation error. Secondly, we propose to define an intrinsic
error estimator based on the converging aspect of the observations. This estimator Eid
is expressed as a function of the threshold level hs and the area of the distribution Sπ

such as :

Eid = (1− ε)

(
1−hs

1−h0
s

)
+ ε

Sπ

S0
π

with Sπ =
∫∫
{(I1,I2) ; π(I1,I2)=1}

dI1dI2 (3)

In this expression, h0
s and S0

π are reference quantities associated with the reference
solution. 0 < ε < 1 is a parameter that emphasizes the influence of hs compared to
the influence of Sπ. This definition is justified by the fact that for a given hs the best
result maximizes Sπ. Lastly, hs is defined by the maximum level of each distribution
which corresponds to :

hs = max
1≤i≤m

[(
1−α

2) tiπ(Omes
i )+α

2 min [[1− ti + tiπ(Omes
i )] ,π(Omes

i )]
]

(4)
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Simulation Design

In order to validate this error estimator we simulate measurement cases using dif-
ferent observations. The simulation design consists in defining the different posi-
tions of the observations associated with the (βk)1≤k≤m orientations. We then add
disturbances to the values

(
δOmes

k

)
1≤k≤m and the orientations

(
δβmes

k

)
1≤k≤m of the

observations and we look at the evolution of the errors between the assumed values
of the indicators and the identified values using the data fusion. This design aims
at studying the robustness of the proposed data fusion process to the measurement
errors, and to validate the error estimator. For each of these simulations we evaluate
the indicator error δIσ, the observation error δOσ, hs and Ehs. The error of the in-
dicators is computed by the L2-norm of the distance of the reference solution to the
identified solutions. The error of the observation is computed by the L2-norm of the
distance of the reference solution to each observation as shown in figure 4 when one
or two observations are disturbed. These both errors are normalized with respect to

Figure 4: Illustration of the errors of the observations and of the indicators when one
and two observations are disturbed.

σ which is the same for all the observations. Lastly, the relative positions of the con-
secutive observations are chosen from 15◦ to 75◦ and the disturbances are included
in the intervals δβ ∈ [−10◦,10◦] and δOmes ∈ [−5σ,5σ].

Results

Figure 5 shows the evolution of δIσ as a function of δOσ for the whole simulated
cases. 22% of these cases increase measurement errors because δIσ > δOσ and 78%
of these cases decrease the measurement errors because δIσ ≤ δOσ. This first result
shows that the data fusion allows to efficiently reduce the measurement uncertain-
ties. The second graph in figure 5 is a reduced version of the first one, only for two
different positions of the observations. The first position (blue lines) is a [15◦,30◦]
relative position and the second position (red lines) is a [30◦,75◦]. The number of
each line corresponds to the 1 to 3 observation that is disturbed. This graph shows
that the sensitivity to the measurement errors is linked to the relative position of the
observations but also to the disturbed observation. Looking for the mean values of
the δIσ δOσ evolution law we obtain that the sensitivity to the measurement errors de-
creases when the minimum relative position of the observations increases. Moreover,
the most reliable observation has to be associated with the maximum relative position
because the sensitivity to the measurement errors quickly increases when the obser-
vation of the maximum relative position is disturbed. Lastly, the intermediate relative
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Figure 5: Evolution of the normalized indicator error δIσ as a function of the normal-
ized observation error δOσ.

position has to be associated with the worst reliable observation because it leads to
the smallest change in the sensitivity to the measurement errors. These results define
some simple criteria in order to obtain the appropriate selection of observations in a
database.

Figure 6 shows the evolutions of δIσ as a function of hs and Ehs. These evolutions
are classified depending on the increasing convergence rate of the observations. The
value of the converge rate associated with the different colors depends on the position
of the three observations’ intersection. This rate is computed by:

τc =
1
m

m

∑
k=1

max
[

min
(

min
1≤ j 6=k≤m

[
π j,πk

]
, min

1≤i6=k, j≤m

[
π j,πk

])]
(5)

τc = 1 when the distributions of the three observations are equal to 1 in the same
point. τc = 0 when at least one of the observations is equal to 0 which means that
there is no point such that the three observations are simultaneously different from 0.

Figure 6: Evolution of the normalized indicator error δIσ as a function of the thresh-
old level hs and the error estimator Ehs.

Although the hs is simply related to the convergence of the observations, we note
that for a same value of hs in the same observation configuration, δIσ can signifi-
cantly increase, from 0 to 4 when hs is minimized. The Ehs evolution is also related
to the observation convergence, but the variation of δIσ decrease when Ehs = 1 for
each configuration. This result confirms that Ehs quantifies the reliability of the so-
lution and defines an intrinsic error estimator associated with the convergence of the
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observations. The ε value is then adapted depending on the choice of the observa-
tions in the database. For example, using the [60◦,60◦] relative positions of the three
observations with the same reliability σ we obtain an optimum ε value of 0.5. Lastly,
similar results are obtained considering from four to six observations and simultane-
ous disturbances.

CONCLUSION and PROSPECTS

In this paper, we studied the reliability of the data fusion method we proposed for the
identification of the concrete material properties. This method is based on the use of
multiple NDT techniques in order to reduce the uncertainties of the identified prop-
erties. The variability of each NDT technique is integrated in the data fusion method
such as their reliability in experimental procedures or their accuracy to detect the ma-
terial evolutions. We proposed a numerical testing of this method based on the rela-
tive position of the observations in the space of the indicators. This testing allowed
to define a methodology for the choice of the optimum observations depending on
their sensitivity to the measurement errors. The relative positions of the observation
are maximized and the worth reliable observations are located at the intermediaire
positions. Lastly, an intrinsic error estimator was defined in order to estimate the
accuracy of the identified solution. This error estimator was associated with the con-
vergence of the observation and the weight of the identified solution compared to the
observation variabilities. The numerical testing then showed that this error estimator
achieves the objective of estimating the accuracy of the identified solution.

Future work will concern the application of this methodology to a real NDT
database. The optimum choice of the observations will be first tested and the er-
ror estimator will be validated. The final objective of this work is to propose a global
tool that accurately estimates the material properties of concrete structures in situ.
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