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ABSTRACT 
 
The Ultrasonic Propagation Imaging (UPI) System is a unique, non-contact, laser-

based ultrasonic excitation and measurement system developed for structural health 
monitoring applications.  The UPI system imparts laser-induced ultrasonic excitations 
at user –defined locations on a structure of interest.  The response of these excitations 
is then measured by piezoelectric transducers.  By using appropriate data 
reconstruction techniques, a time-evolving image of the response can be generated.  A 
representative measurement of a plate might contain 800x800 spatial data 
measurement locations and each measurement location might be sampled at 500 
instances in time.  The result is a total of 640,000 measurement locations and 
320,000,000 unique measurements.  This is clearly a very large set of data to collect, 
store in memory and process.  The value of these ultrasonic response images for 
structural health monitoring applications makes tackling these challenges worthwhile.   

Recently compressed sensing has presented itself as a candidate solution for 
directly collecting relevant information from sparse, high-dimensional measurements.  
The main idea behind compressed sensing is that by directly collecting a relatively 
small number of coefficients it is possible to reconstruct the original measurement.  
The coefficients are obtained from linear combinations of (what would have been the 
original direct) measurements.  Often compressed sensing research is simulated by 
generating compressed coefficients from conventionally collected measurements.  The 
simulation approach is necessary because the direct collection of compressed 
coefficients often requires compressed sensing analog front-ends that are currently not 
commercially available.  The ability of the UPI system to make measurements at user-
defined locations presents a unique capability on which compressed measurement  
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techniques may be directly applied. The application of compressed sensing techniques 
on this data holds the potential to reduce the number of required measurement 
locations, reduce the time to make measurements, reduce the memory required to 
store the measurements, and possibly reduce the computational burden to classify the 
measurements.  This work considers the appropriate selection of the signal dictionary 
used for signal reconstruction, and performs an evaluation of compressed sensing 
technique’s ability to reconstruct ultrasonic images using fewer measurements than 
would be needed using traditional Nyquist-limited data collection techniques. 

 
INTRODUCTION 

 
Compressed sensing has been a prolific research topic in applied math and 

statistics over the last few years.  Excellent tutorials covering the basics of compressed 
sensing can be found in  [1], [2], and [3].  To summarize, a signal of interest x can be 
represented as: 

  or in matrix form as sx     (1) 

Where Ψ is an orthonormal basis and “s” is the representation of the signal in the 
Ψ domain.  In the case of compressed sensing we are interested in the case where x is 
compressible in some domain.  That is, the number of significant non-zero elements 
of s is equal to K and K << N.  K is known as the “sparsity” of the signal.  A 
measurement matrix “Φ” is then introduced to produce compressed sensing 
coefficients y.   

ssxy       (2) 
Where Φ has M<<N rows.  At this point it is important to note that this equation 

represents an underdetermined system of linear equations.  One of the major 
breakthroughs of the compressed sensing community was the finding that assuming 
K<<N it is possible to recover x from y assuming the matrix Φ possesses the restricted 
isometry property (RIP) and x is sparse in some basis [5].  An example of a sparse 
signal would be a signal that only contains a few non-zero Fourier coefficients such as 
a sum of decreasing harmonics that represents a structure’s impulse response.  The 
direct formulation of this problem is finding the vector s with minimal l0 norm.  
Unfortunately l0 norm minimization is numerically unstable and computationally 
expensive [2].  It has been shown though that the l0 can be replaced with an l1 norm 
relaxation [1].  The l1 norm regularization problem [2], [4] can be solved to recover 
sparse signals from the compressed coefficients y.  Amazingly, it is possible to 
recover x using an M  measurements following the relation [2]: 
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Where c is a constant that has empirically been found to approximately equal 4.0 
[2].  Equation (3) implies that it is possible to reconstruct a sparse signal x using far 
fewer measurements than elements in x.  In this work, the l1 norm regularization 
approach will be explored for recovering the signal x from compressed coefficients.  
The l1 norm regularization problem used to attempt recovery of the original signal can 
be written as: 
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Here “s” is the vector of coefficients for the dictionary vectors in Ψ. The 
parameter γ is used to trade-off between the sparsity in the coefficients of s and the 
quality of the fit to the compressed measurements y.  In the extreme case where γ is 
set equal to zero the problem degenerates into the conventional l2 norm problem.  
Prior work done by the authors has shown a range of γ values produce similar 
compressed sensing results [5].  For this work γ was set equal to 0.1.   

 
ULTRASONIC PROPOGATION IMAGING SYSTEM COMPRESSED 
SENSING CONCEPT 

 
The conventional UPI system was introduced in [6].  To sumarize, a Q-switched 

laser is used to excite a structure at ultrasonic frequencies by directing thermal energy 
into the structure.  The response of the structure is then measured using a PZT sensor.  
The laser is used to provide multiple excitations by performing a raster-scan sweep 
across the structure of interest.  The individual time responses can then be arranged in 
a pattern corresponding to the spatial arrangement of the raster scan.  The result is 
generally a 3-D cube of data.  Two of the dimensions correspond to the spatial 
dimensions, and one of the dimensions corresponds to time.  It is possible to generate 
2-D snapshots of the data at each instant of time.  By sequentially stepping through 
these snapshots or time-slices of data it is possible to generate a movie that illustrates 
the ultrasonic wavefield propogating through the structure as time evolves.  Damage 
in the structure of interest manifests itself as anomalies in the wavefield propogation.  
The UPI measurement technique features a number of advantages.  It can be used to 
collect high-resolution ( < 1 mm spatial resolution ) full-field ultrasonic data using 
only a single embedded PZT sensor.  It is possible to literally watch a movie of 
ultrasonic waves propogating in thin plate structures.  One challenge associated with 
the UPI system is that in its raw form a relatively large amount of data is typically 
generated from these measurements.  A typical data cube from the UPI might be on 
the order of 560x252x500 ≈70.6 million data points which is a fairly high dimensional 
measurement when compared to a typical time series for SHM.  At first glance though 
it is obvious that the data collected by this system is not unlike data collected by a 
conventional camera in the sense that it has similar dimensionality.  Techniques from 
the image processing community can be brought to bear on this challenge.   

Compressed sensing is a novel sampling technique for collecting high-
dimensional data such as images.  The high-dimensional nature of UPI data, coupled 
with the method used to collect the measurements makes UPI a good candidate for 
compressed sensing techniques.  Figure 1 summarizes the proposed UPI compressed 
sensing concept.  The following summarizes how a compressed measurement is 
collected.  First, a Q-switched excitation laser is directed onto a digital micro mirror 
array.  The digital micro mirror array implements the incoherent Φ matrix used to  
perform the compressed measurement process.  It does this by directing an incoherent 
pattern of laser beams onto the structure of interest.  The resulting response is then 
measured using a single PZT sensor as normal.  This response will be a linear 
superposition of the responses that would have been collected from each laser beam 
individually.  This processor corresponds to generating a single compressed 
measurement/element of the y vector in equation 2.  The process is then repeated 
using a different incoherent pattern of excitation laser beam until a sufficient number 
or compressed measurements is collected.   
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Figure 1. The proposed UPI compressed sensing measurement process. 

 
  This concept is not unlike the single pixel camera described in [7].  Once the 

compressed measurements have been collected, the data is sent to a central server.  
The server would perform a variety of functions.  For example, the server would 
maintain the dictionary Ψ and could potentially perform online singular value 
decomposition (SVD)-based principal components analysis (PCA) to update the 
dictionary [8], [9] as new expressions of damage are uncovered by the system.  The 
server would also be used to perform compressed sensing reconstruction, and 
smashed filtering as was described in [5], [10].   

The goal of this initial research effort is to investigate the feasibility of using 
compressed sensing techniques for UPI data collection.  The hope is that by using 
these techniques it will be possible to collect substantially fewer measurements 
leading to increases in scan rates and a decrease in the memory requirements for 
storing this data.  Furthermore, the high dimensionality of this data implies that data 
processing may become quite cumbersome.  It is highly possible that by making use 
of compressed sensing techniques such as the smashed filter that the time and memory 
requirements for SHM analysis will be significantly reduced.    

 
GENERATION OF MEASUREMENT MATRIX Φ 

 
Often the compressed sensing literature will discuss the use of a measurement 

matrix Φ whose elements are derived from values sampled i.i.d from a Gaussian 
random distribution [11].  Unfortunately Gaussian random matrices will not work for 
the proposed compressed sensing concept for two reasons.  The first reason is that the 
digital micro mirror array used to implement the compressed sensing inherently is 
only able to assume binary on or off states.  It is not able to assume the continuous-
valued, positive and negative numbers required by the Gaussian distribution.  The 
second concern is that the laser is only able to provide a finite amount of power into 
the plate.  The more beams that are used to excite the plate, the smaller the amount of 
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energy is available to excite the plate.  If a very large number of beams are used, each 
individual beam may have so little energy associate with it that the response is not 
detectable with the PZT sensor.  From a laser energy standpoint it is preferable to 
excite the plate using as few beams as possible.  A Gaussian Φ would require that 
some laser energy be imparted to every dimension in the conventional measurement.  
Furthermore, it would need both positive and negative excitation which is not possible 
with the current UPI system.  In order to address this problem, these simulations have 
begun to investigate the possibility of using the sparse, binary matrices discussed in 
[12].  These matrices do not have the same robustness and performance with respect 
to compressed sensing reconstruction that Gaussian matrices enjoy. Regardless their 
sparse, binary nature make them work investigation for the UPI application.  Sparse 
binary matrices were used throughout this work.  The matrices were generated by 
selecting the number of non-zero elements desired in each column of the Φ matrix.  A 
binary column vector with the appropriate number of ones was then generated.  The 
elements of the column vector were then randomly shuffled.  This procedure was then 
repeated for each dimension of the conventional measurement and the resulting 
column vectors were concatenated together to form a measurement matrix Φ.   

 
CHOICE OF DICTIONARY FOR UPI MEASUREMENTS 

 
When executing compressed sensing reconstruction it is imperative that a suitable 

dictionary of vectors Ψ be used to perform the reconstruction.  It generally has been 
found helpful to use a dictionary that includes vectors that closely match the 
measurement that is being reconstructed [10].  Figure 2 shows a sequential 
progression some of the measurements collected during the course of this work.  
These measurements are taken from a pipe specimen that has an ellipsoidal-shaped 
reduction in thickness in the center of the measurement.  The specimen is reduced to 
40% of its nominal thickness.  When the wave front meets the reduction in thickness 
at time slice 300 it is possible to observe the reflections that result from the stiffness 
change.   

The measurements displayed in Figure 2 suggest that a Fourier basis may be a 
good choice for signal reconstruction.  Other possible choices include wavelets and 
Gabor atoms.  In this work the possibility of using dictionaries learned from data is 
also explored.  Specifically, a learned dictionary is generated by taking a number of 
conventional measurements and converting them into column vectors.  The column 
vectors can then be assembled into a data matrix.  Principal components analysis can 
then be applied to this matrix.  The eigenvectors associated with the large eigenvalues 
can then be used to augment the dictionary.  The idea is that the eigenvalues should 
naturally be a good fit to the data since they were generated from similar 
measurements.  This idea was explored by taking the 400th time slice and breaking it 
into 16 x 16 patches.  These patches were then converted into column vectors with 
256 elements and assembled into a data matrix.  Principal components analysis was 
then performed on the covariance matrix of the data matrix by using singular value 
decomposition.  The resulting eigenvector of the covariance matrix can be seen in 
Figure 3.  PCA analysis shows that the rank of the data matrix is very small in 
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Figure 2. Examples of measurements collected by 
the UPI system.  Color bar indicates scaled units. 
Measurements were obtained  with a Fuji R-Cast 

acoustic emission sensor. 
 

Figure 3. The first 9 eigenvectors 
generated from the covariance matrix of time 
slice 400 when divided into 16x16 patches. 

 
comparison to its dimensionality.  The data has a dimensionality of 256, but the 
majority of the variance in the data is accounted for with only the first 10 
eigenvectors.  These results suggest that it may be possible to obtain suitable 
reconstructions of these types of measurements using under-complete dictionaries 
learned from the data.   
 
RECONSTRUCTION RESULTS 

 
A preliminary check was performed to do an initial feasibility study of 

compressed sensing.  The 410th time slice from the measurement described in the 
previous section was broken up into 16x16 blocks.  The 40th block was selected for 
demonstrating simulated compressed sensing (Figure 4(a)).    The number of 
compressed coefficients collected was M=128.  An over-complete dictionary was 
created by concatenating the dictionary generated from the PCA analysis of the 400th 
time slice with a 16x16 2-Discrete Fourier Basis.  Only the eigenvectors 
corresponding to the 50 highest eigenvalues were used from the PCA-generated 
dictionary. The γ parameter was set equal to 0.1.  Reconstruction was executed using 
the optimization routine described in equation (4) and was implemented with the 
CVXMOD software [13]. The result of the reconstruction is shown in Figure 4.  
Figure 4(a) shows the original data block, and Figure 4(b) shows the reconstructed 
data block.  The reconstruction error was calculated using normalized Root Mean 
Square Deviation (RMSD) expressed as a percentage: 

 
രሬሬሬሬሬሬሬሬሬሬሬݎ݋ݎݎ݁ ൌ രሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ݊݋ଓݐܿݑݎݐݏ݊݋ܿ݁ݎ െ  രሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ   (5)ݐ݊݁݉݁ݎݑݏܽ݁݉

 

௡௢௥௠௔௟௜௭௘ௗܦܵܯܴ ൌ
ଵ

୫ୟ୶ሺ௘௥௥௢௥രሬሬሬሬሬሬሬሬሬሬሬሬሬሻି୫୧୬	ሺ௘௥௥௢௥രሬሬሬሬሬሬሬሬሬሬሬሬሬሻ
∗ ට

∑ ሺ௘௥௥௢௥രሬሬሬሬሬሬሬሬሬሬሬሬሬ೔ሻమ
ಿ
೔సభ

ே
∗ 100%  (6) 

 
Where ݐܿݑݎݐݏ݊݋ܿ݁ݎଓ݊݋രሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ is the reconstructed data, ݉݁ܽݐ݊݁݉݁ݎݑݏരሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ is the original 

data, and N=256 is the dimensionality of the original data.  The percentage normalized 
RMSD for this reconstruction is 15.65%.  Depending on the application this may or 
may not be sufficient.  It is important to not however that only half as much data was 
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collected, and the time to collect the measurements would be cut in half if a dedicated 
compressed sensing front-end were employed.   

 
Figure 4. (a) Original 16x16 block of data, (b) Reconstructed 16x16 block of data. 

 
CONCLUSIONS 

 
These results obtained in this work are promising enough to continue investing 

effort into exploring compressed sensing for the UPI application.  It is expected that 
greater performance gains will be realized if the size of the reconstructed blocks can 
be increased.  Computational limitations are currently preventing the timely 
reconstruction of blocks larger than 32x32.  It is expected that by making use of 
greedy algorithms such as CoSaMP [14] for the reconstruction as well as Graphical 
Processor Unit (GPU) technology, it will become practical to reconstruct increasingly 
large data blocks.  Effort will also continue in making use of deep learning techniques 
[15] to learn appropriate dictionaries for reconstruction from the data.   

The initial results presented in this work suggest that compressed sensing shows 
promise as a candidate technology to speed up the collection of UPI data, as well as 
help ease the memory requirements to store UPI data.  Work will continue to develop 
more high-performance UPI compressed sensing systems.   
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