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ABSTRACT 
 

The aim of the paper is to study the possibility of implementing modal filtering 
techniques for damage detection in the presence of non-linearities in the recorded signals. 
Initially designed for linear damage detection the method is based on the linear  
combination  of  the  sensors  responses,  a  transformation  to  the  frequency domain, and 
the computation of peak indicators which are used subsequently in an outlier analysis 
process. The efficiency of the method to detect both linear and non- linear damage 
scenarios is assessed using data recorded on the three-storey frame structure   previously   
developed   and   studied   at   Los   Alamos   National   Labs. Experimental  data  
consists  in  four  acceleration  records.  Besides  the  baseline condition, both linear 
(mass and stiffness changes) and non-linear (bumper device) changes  have  been  
considered.  The  results  obtained  using  the  modal  filtering approach are compared to 
the ones obtained based on auto-regressive models, considering either the auto-regressive 
parameters or the time-domain residuals. 

 
INTRODUCTION 

 
Nowadays, aging aerospace, civil and mechanical infrastructure continues to be 

operated under the risk of damage accumulation and possible failure. In order to 
detect  such  a  degradation  of  performances  leading  to  possible  failure,  on-line 
structural monitoring systems should be implemented. Over the last decades, many 
efforts have been made in the field of vibration based damage detection methods 
which are mainly focused on modal parameters changes such as modal damping, 
eigenfrequencies or mode shapes [1]. Recently, a fully automated approach based on 
modal filters and control charts has been proposed in [2,3] for damage detection and 
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validated in a laboratory experiment on an aircraft wing in [4]. More recently, the 
method has been extended to damage localization using strain measurements in [5]. In 
this paper, the effectiveness of this method to detect both linear and non-linear 
damage scenarios is assessed using data recorded on a three-storey frame structure 
previously developed and studied at Los Alamos National Labs. The paper is 
organized as follows: in the first part, the experimental setup and the available datasets 
are presented. In the second part, the automated method for damage detection using 
the modal filtering technique is briefly recalled and applied to the experimental data. 
Finally, in the third part, the results obtained using auto-regressive (AR) models [6] 
are presented and compared to the results obtained using the modal filtering 
technique.

EXPERIMENTAL SET-UP AND DATA SETS DESCRIPTION 

Tests were performed at Los Alamos National Labs on a three-storey frame 
structure shown with its basic dimensions in Figure 1. 

Figure 1. Mechanical drawing of the three-storey frame structure. 

The structure consists of aluminum columns and plates assembled using bolted 
joints. The structure can slide on rails allowing movement in the x-direction only. A 
center column is suspended from the top floor and can be used to simulate damage by 
inducing nonlinear behavior when it contacts a bumper mounted on the next floor. 
The position of the bumper can be adjusted to vary the extent of impacting that occurs 
at a particular excitation level. In the context of damage detection, this source of 
damage is intended to simulate fatigue cracks that can open and close or loose 
connections that can rattle under dynamic loading. An electrodynamic shaker provides 
a lateral excitation to the base floor along the centerline of the structure. A load cell is 
attached at the end of a stinger to measure the input force from the shaker to the 
structure. Four accelerometers are attached at the centerline of each floor on the 
opposite side from the excitation source to measure the system’s response. A National 
Instruments PXI data acquisition system is used to collect and process the data. The 
analog sensor signals are digitized at a rate of 2560 Hz and acquired in blocks of 
65536 points. The signals are subsequently downsampled into 8192 data points at 
3.125 ms intervals corresponding to a sampling frequency of 320 Hz. A band-limited 
random excitation in the range of 20-150 Hz is used to excite the structure. 
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The structural state conditions can be categorized into four main groups, as shown 
in Table 1. Note that for each state condition, 50 tests were performed, yielding 50 
time histories per channel. The first group is the baseline condition. The second group 
includes the states with linear changes applied to the structure (State#2-9). Initially, 
this set of data was designed to represent the effect of environmental and operational 
changes which would produce changes of eigenfrequencies of the system, but not the 
appearance of non-linearities in the signals. In the present study, this data is 
considered as a linear damage case, representing the linear change of stiffness or mass 
in local areas of the structure, without the appearance of non-linearities in the signals. 
The third group includes the state conditions with the non-linear changes; these were 
simulated by the introduction of nonlinearities into the structure using the bumper and 
the suspended column with different gaps between them (State#10-14). Finally, the 
fourth group includes state conditions including both linear and non-linear changes in 
the dynamic signals (State#15-17). More details about the test structure as well as 
damage scenarios can be found in [7]. 

Table 1. Structural state conditions. 
Label Samples State condition Description 

State #1 1-50 Initial Structure Baseline 
State #2 51-100 LC m=1.2kg at the base 
State #3 101-150 LC m=1.2kg on the 1st floor 
State #4 151-200 LC -87.5% stiffness in column 

1BD 
State #5 201-250 LC -87.5% stiffness in 

columns 1AD, 1BD 
State #6 251-300 LC -87.5% stiffness in column 

2BD 
State #7 301-350 LC -87.5% stiffness in 

columns 2AD, 2BD 
State #8 351-400 LC -87.5% stiffness in column 

3BD 
State #9 401-450 LC -87.5% stiffness in 

columns 3AD, 3BD 
State #10 451-500 NLC Gap=0.20mm 
State #11 501-550 NLC Gap=0.15mm 
State #12 551-600 NLC Gap=0.13mm 
State #13 601-650 NLC Gap=0.10mm 
State #14 651-700 NLC Gap=0.05mm 
State #15 701-750 LC+NLC Gap=0.20mm and 

m=1.2kg at the base 
State #16 751-800 LC+NLC Gap=0.20mm and 

m=1.2kg on the 1st floor 
State #17 801-850 LC+NLC Gap=0.10mm and 

m=1.2kg on the 1st floor 
LC=linear change – NLC = non-linear change

DAMAGE DETECTION USING MODAL FILTERING 

Modal filtering 

Consider a vibrating structure equipped with a large network of sensors. Spatial 
filtering consists in condensing the data from a network of  sensors through a linear 
combination to form a single output response. A modal filter which isolates mode 
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can be constructed by properly selecting the weighting coefficients of the linear 
combiner in such a way that it is orthogonal to all  modes of a structure in the 
frequency band of interest, except the mode . The time domain output of the modal 
filter can be transformed into the frequency domain by computing either the frequency 
response function (FRF) if the input force is known, or the power spectral density 
(PSD) if only ambient vibrations are measured. The typical frequency domain output 
of a modal filter contains a single peak as shown in Figure 2a.When damage occurs in 
a structure, it results in the appearance of spurious peaks in the frequency domain 
output of the modal filters, as demonstrated in [4,1] and shown in Figure 2b. 

Choice of features and statistical process control for damage detection 

The feature used for damage detection is a peak indicator computed around each 
natural frequency of the initial, undamaged structure [3]. Based on the peak indicators 
extracted automatically from the measurements, control charts are then used in order 
to detect a deviation from normal condition [8]. The control chart used in this study is 
the multivariate Hotelling  control chart.  

(a) (b) 
Figure 2. a) Perfect modal filter tuned to mode b) Effect of damage on the modal filter output. 

Results 

Based on the signals recorded by the accelerometers for the baseline condition, the 
modal parameters have been estimated using the data-driven stochastic subspace 
identification implemented in the MACEC toolbox under Matlab [9]. Additionally, 
based on the identified mode shapes, modal filter coefficients for modes 1,2 and 3 
have been computed. As an example, Figure 3a shows the FRFs of the output of the 
modal filters tuned to mode 2 for the baseline condition (State#1) and the maximum 
linear damage (State#9), and Figure 3b compares the baseline condition with the 
maximum non-linear damage (State#14). Although the initial filter is not perfect, the 
figure shows clearly the appearance of the spurious peaks. For each modal filter, the 
peak indicator has been computed in the three following intervals: [26.1880 Hz -
36.1644 Hz], [36.1645 Hz - 64.2759 Hz] and [64.2760 Hz -78.5596Hz].  
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(a) (b) 
Figure 3. Effect of damage on the FRF of modal filters tuned to mode 2: a) for the state condition 

#9 and b) for the state condition#14.

A combined representation of the evolution of all the peak indicators for all the 
states is obtained using the Hotelling  multivariate control chart (Figure 4) in which 
a single control limit (Upper Control Limit – UCL) is computed using 80% of the 
available baseline condition tests (State #1) and a confidence level of 97.5 % 
(α=0.025). The figure clearly shows that all the linear changes are detected as outliers. 
This was expected, as the method based on modal filters is designed to react to local 
changes of mode shapes which are induced here by the local stiffness and mass 
variations induced to the structure. The figure also shows that the method is quite 
sensitive to the non-linear changes, except for the lowest level (State#10) for which 
although there is a slight increase in the statistics, it does not clearly appear as an 
outlier. The method is therefore sensitive to both linear and non-linear changes in the 
dynamics signals, but is not able to differentiate between these two types of variations. 

Figure 4. Multivariate Hotelling  control chart using 6 peak indicators extracted from modal filters 
for all samples and state conditions. 

DAMAGE DETECTION USING AUTO-REGRESSIVE BASED METHODS 

The AR models have been used in SHM to extract damage-sensitive features from 
time series data, either using the model parameters or the residual errors [10,11]. For a 
measured time series     s1,s2,...,sN  the AR(p) model of order p is given by 
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si = α jsi− j + ei

j=1

p

(1) 

where  si is the measured signal and   ei  is an unobservable random error at discrete 
time index   i . The unknown AR parameters,   α j , can be estimated by using the least 
squares method. The order of the model is always an unknown integer that needs to be 
estimated from the data. The Akaike Information Criterion (AIC) has been reported as 
one of the most efficient techniques for order optimization [6]. For SHM, an AR 
model can be used as a damage-sensitive feature extractor based on either the (i) 
residual errors   ei  or (ii) the parameters jα . The first approach consists of using the 
AR model, with parameters estimated from the baseline condition, to predict the 
response of data obtained from a potentially damaged structural condition. For the 
baseline condition, the residual errors are generally assumed to be independent and 
normally distributed. This approach assumes that damage will introduce either linear 
deviations from the baseline condition or nonlinear effects in the signal and, as a 
result, the linear model developed with the baseline data will no longer accurately 
predict the response of the damaged structure. The second approach consists of fitting 
AR models to signals from the undamaged and damaged structural conditions. In this 
approach, the AR parameters are used directly as damage-sensitive features, and some 
form of a multivariate classifier can be used to discriminate the damage classes. 
Notice that the parameters should be constant when obtained from times series of a 
time-invariant structural system. More details about this algorithm can be found in [7]. 
For this paper, the order of the model (p=10) was established based on the AIC, as 
explained in previous studies [12]. The analysis present herein uses the two 
approaches summarized above in order to highlight the main advantages and 
disadvantages of each feature. 

For the first case, and for each test, four individual AR(10) models, with 
parameters from the baseline condition, are used to fit the corresponding acceleration 
time series and to obtain the residuals. Then, the residual errors are reorganized into 
subgroups of four in order to perform dimensionality reduction, i.e. to transform 
residual time series with 8192 to 2048 observations. For one test from State#5, Figure 
5 shows a Hotelling  multivariate control chart in which the UCL is computed 
using 80% of the available baseline condition tests (State #1) and a confidence level 
of 97.5%. The figure highlights 625 outliers, high above the number errors (51) 
suggested by the level of significance assumed a priori, α=0.025, which indicates that 
the process is likely to operate out of control (damaged system). Thus, generalizing 
the same procedure to the 850 tests (samples), Figure 6 plots the number of outliers 
per sample. Clearly, in this case, the residual errors seem not to be appropriate to 
discriminate all linear and non-linear changes (51-850) from the baseline condition (1-
50). 

For completeness, the same procedure was carried out using residuals estimated 
from AR(10) models with AR parameters estimated from each test. The results plot in 
Figure 7 indicates that in this case, the algorithm seems to be not appropriate to 
discriminate the states with linear changes from the baseline condition. Indeed, it is 
related to fact that the linear changes do not change the dynamic dimension of the 
system and an AR(10) is still appropriate to fit the data. However, the nonlinearities 
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caused by the bumper introduce complexity into the data in such a way that a linear 
AR(10) model is no longer appropriate to fit the data, as demonstrated in [13]. 

Figure 5. Multivariate Hotelling  control 
chart of residuals showing the evolution of the 

outliers (625) for sample #225 (State#5). 

Figure 6. Number of outliers per sample 
based on multivariate control charts of residuals. 

For the second case, and for each test, four individual AR(10) models are used to 
fit the corresponding time series from the four accelerometers and their parameters are 
used directly as damage-sensitive features in concatenated format, yielding 40-
dimensional feature vectors. Figure 8 shows the Hotelling  multivariate control 
chart in which a UCL is computed using 80% of the available baseline condition tests 
(State #1) for a confidence level of 97.5% ( =0.025). In this case, the figure clearly 
shows that all the conditions, with linear and non-linear changes, are detected as 
outliers. Indeed, it was expected because the AR parameters are related to the stiffness 
and mass of the system. The figure also shows more dispersion for the classification 
of those conditions associated with low level of nonlinearities, which is related to the 
randomness of the impacts.  

Figure 7. Number of outliers per sample 
based on multivariate control charts of residuals 
and with AR parameters estimated on each test. 

Figure 8. Multivariate Hotelling  control 
chart using as features the AR(10) parameters 
from all four accelerometers in concatenated 

format. 

CONCLUSION 

In this study, we have compared different approaches for damage detection in the 
case of both linear and non-linear damage using data from a three-storey building 
mockup previously developed at the Los Alamos National Labs. The main results of 
this comparison can be summarized as follows : (i) when using AR model parameters 
or peak indicators extracted from modal filters, it is possible to detect both linear and 
non-linear damages efficiently, (ii) when using AR model residuals, the detection is 
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not as effective when the parameters are identified on the baseline condition only and 
(iii) if instead, the AR parameters are identified from each state, it is possible to be 
almost insensitive to linear damage cases and clearly identify non-linear damages. 
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