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ABSTRACT 

Structural health monitoring (SHM) and damage detection performed in time 
domain from the measured vibration data is studied. The advantages of damage 
detection in time domain include: 1) direct sensor data can be used with no complex 
feature extraction and 2) the data dimensionality remains low. The main disadvantage 
is that the amount of data easily becomes exhaustive. Therefore, the covariance matrix 
estimation can be difficult. The present paper discusses sequential on-line SHM, in 
which damage detection is performed each time when a new measurement is 
available. Assuming the analysis parameters remain the same, many functions can 
utilize recursive (sequential) estimation to save time and memory. Only the projection 
to the principal subspace must be repeated for all data, because the principal subspace 
may vary. An experimental study is performed to validate the proposed algorithm. 

 

INTRODUCTION 

In vibration-based structural health monitoring (SHM), damage identification is 
performed from time histories measured simultaneously with several accelerometers 
or strain gauges at different locations of the structure. Damage detection can be 
performed in the time domain from the raw sensor data or in the feature domain, in 
which damage-sensitive features are first extracted from the time series. Both 
alternatives have their advantages and disadvantages. The advantages of damage 
detection in time domain used in this study include the following: 1) direct sensor data 
can be used with no complex feature extraction, and 2) the data dimensionality 
remains low. The main disadvantage is that the amount of data may be exhaustive.  
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A single vibration measurement typically consists of hundreds of samples from 
each sensor. The model of the undamaged structure is build using training data 
acquired under different environmental or operational conditions during a long time. 
Hence, in a time-domain approach, the amount of training data easily becomes 
excessive.  

Many damage detection algorithms utilize the data covariance matrix. Due to the 
vast amount of training data, the covariance matrix estimation can be difficult. The 
monitoring period is typically several years resulting also in a huge amount of test 
data. 

In the on-line SHM, the decision about damage existence is made after each new 
measurement. If the model parameters remain the same, the sensor network model 
must be built only once. This model is then fixed before launching the SHM system. It 
will be seen that the features for the new test data can be created using the fixed model 
and the new data only. Many functions can utilize recursive (sequential) estimation. 
However, the features from all previous measurements are needed for dimensionality 
reduction. Also the control charts for damage detection must be re-designed. 

The paper is organized as follows. First, the generalized likelihood ratio test 
(GLRT) for damage detection is described. The damage detection algorithm is 
reported utilizing sequential estimation. An experimental study is performed to 
validate the proposed sequential analysis algorithm for on-line damage detection and 
localization. A short conclusion is given in the end. 

 

FEATURES FOR DAMAGE DETECTION AND LOCALIZATION 

The sensor network is modelled as a Gaussian process [1]. This process can be 
both spatial and temporal. In mechanical vibrations, spatial and temporal correlations 
are related to the mode shapes and natural frequencies, respectively. The Gaussian 
process model is fully determined by its mean vector  and covariance matrix : 
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where p(x) is the probability density function (pdf) and x is the measured variable, 
typically a simultaneous sample of accelerations or strains. 

In principle, the model parameters  and  can be easily estimated directly from 
the measurements. However, two issues emerge. First, the amount of training data is 
often exhaustive, consisting of several measurements under different environmental or 
operational conditions during a long time. Therefore, the estimation of the model 
parameters must be performed recursively. Second, due to the curse of dimensionality, 
the number of model parameters is high, and it would be necessary to perform 
dimensionality reduction. This is done by computing the likelihood ratio separately 
for each sensor in the network and performing principal component analysis (PCA) in 
the end. 

To estimate a model for a single sensor, the minimum mean square error (MMSE) 
estimation is used, in which the signal of each sensor is estimated in turn using the 
other sensors in the network. It is assumed that the number of sensors is adequate to 
build up a redundant system; for spatial correlation, this number should be greater 
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than the number of active modes. Spatiotemporal correlation can be utilized if the 
process can be assumed stationary [2]. The sensors are divided into observed sensors 
v and missing sensors u: 
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with a partitioned covariance matrix  of the training data 
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where the precision matrix  is defined as the inverse of the covariance matrix  and 
is also written in the partitioned form. A linear MMSE estimate is [2]: 
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where u and v are the mean of u and v, respectively. The error covariance matrix is 
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MMSE results in a conditional distribution for each sensor in the network. 

Assuming Gaussian distribution, the conditional pdf of u becomes: 
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Damage detection is done using the hypothesis test for the MMSE model 

parameters [2] applying the generalized likelihood ratio test (GLRT) [3]. The test 
statistic is the log-likelihood ratio )( vul for each sample: 
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where );( iHp vu  is the probability according to the hypothesis Hi, i = 0, 1. The 

hypothesis H0 is that the model parameters are the same as those of the training data 
(normal), and the hypothesis H1 is that the parameters are different to those of the 
training data (anomaly). The distributions );( 0Hp vu  and );( 1Hp vu  are obtained by 

estimating the parameters from the training data and the current measurement, 
respectively. The hypothesis test is based on the Neyman-Pearson (NP) lemma [3]. To 
maximize the probability of detection PD for a given probability of false alarm PFA = 
, decide H1 if  )( vul . The threshold  is found from the false alarm constraint 

PFA = . Choosing the threshold for detection is discussed in the following.  
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Each sensor yields one test statistic, resulting in a total number of variables equal 
to the number of sensors in the network. The dimensionality can be reduced by using 
principal component analysis (PCA) [4] to the log-likelihood ratios l (Equation 7). 
The distributions of l and the PCA scores are unknown. Therefore, the statistics used 
for novelty detection are the maxima and minima of the first principal component 
scores, and using the theory of extreme value statistics (EVS) [5, 6], the thresholds are 
designed so that the probability of false alarms is 0.001. In this study, the extreme 
values are computed from 500 subsequent variables. Finally, the statistics are plotted 
on a control chart [7]. 

Damage localization is performed by computing the average log-likelihood ratio 
for each sensor in the measurement. The largest value is assumed to reveal the sensor 
closest to the damage location. 

 

RECURSIVE ESTIMATION (TRAINING DATA) 

The estimation of the mean  and covariance matrix  from a high amount of 
training data needs special consideration. Here, a recursive method for estimation is 
presented. It is assumed that the data are divided into segments, each representing a 
multidimensional time series measurement.  

The estimates of the mean and the matrix of mean sums of squares and products 
for measurement j are respectively: 
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where nj is the number of samples in measurement j. Also temporal correlation can be 
estimated by time-shifting of the data [2]. 

If the current (i) estimates of the mean and the matrix of mean sums of squares 

and products are iμ̂  and iM̂ , respectively, and those of the subsequent measurement j 

are jx  and jM , then the updated (i+1) estimates become: 
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where 
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Initially: 

 

4



 

0,ˆ,ˆ 1
000  P0M0μ  (11)

 
Finally, after recursive estimation, the covariance matrix estimate is: 
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Often, standardized variables are preferred with a zero mean and unit standard 

deviation. The standardized variable z is: 
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where the diagonal standard deviation matrix S is: 
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Transformation (13) results in the following covariance matrix for the 

standardized variables: 
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The algorithm to build a model of the training data is as follows. 

1. Monitoring the undamaged structure at different environmental or operational 
conditions. Data acquisition and signal processing of the training data. 

2. Define the model parameters. 
3. Estimate the mean  and covariance matrix  of the training data using a recursive 

algorithm. 
4. Extract features (log-likelihood ratios) for each measurement. 
5. Compute the mean and covariance matrix of the features for PCA using a 

recursive algorithm.  
 

DAMAGE DETECTION AND LOCALIZATION (NEW TEST DATA) 

Once new data arrive, the objective is to decide if damage is present or not. It is 
assumed that the mean and covariance of the training data have already been 
estimated and fixed. Also the log-likelihood ratios have been computed for the 
training data. In the following on-line monitoring algorithm, the decision is made after 
each new measurement. 
1. Acquire new measurement. 
2. Extract features (step 4 in the previous list). 
3. Update the mean and covariance matrix of the features (estimated in step 5 of the 

previous list) for PCA using a recursive algorithm. 
4. PCA: Compute the first principal component of the updated covariance matrix. 
5. Projection of the features of all previous measurements onto the first principal 

component.  
6. Damage detection using control charts. 
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7. Damage localization. 
8. Return to step 1. 

 
In steps 4–6, recursive estimation is not utilized. For PCA, recursive algorithms 

exist [8], but the main issue is the projection of the features of all previous 
measurements onto the first principal axis. The projection must be repeated after each 
new measurement, because the principal subspace may vary. 

Notice that two different covariance matrices are needed. Both matrices may need 
a recursive algorithm. Let the number of sensors be p and the model order m. 
1. The covariance matrix of the measurement data to build the sensor network model 

for feature extraction (Equation 1). This matrix includes information of the 
training data only. The dimensionality is p(m+1). 

2. The covariance matrix of the feature vector for PCA. This matrix includes 
information of all previous measurements. The dimensionality is p.  

 

EXPERIMENTAL RESEARCH 

The proposed approach was investigated with a monitoring system built in the 
laboratory. The structure was a 4.2 meters long, 36 kg wooden model bridge shown in 
Figure 1. Random excitation was applied to the structure to excite the lowest modes. 
Fifteen accelerometers measured the response at three different longitudinal positions. 
The sampling frequency was 256 Hz and the measurement period was 32 s. For 
sufficient redundancy, the data were low-pass filtered with 128 Hz and re-sampled 
resulting in 4076 samples per channel in each measurement. 

The measurements were made during several days, and it was noticed that the 
dynamic properties of the structure varied due to environmental changes. Temperature 
and humidity variations were assumed to be the main influences on the wooden 
structure. 

Damage was then introduced by adding point masses on the structure. The sizes of 
the masses were 23.5, 47.0, 70.5, 123.2, and 193.7 g. The point masses were attached 
on the top flange, 600 mm left from the midspan (Figure 1). The last measurements 
were again from a healthy structure. The added mass was very small compared to the 
total weight of the structure (36 kg), even the highest mass increase was only half a 
percent. See Table 1 for details. 

Model order 5 was used in the analysis. The training data were measurements 1–
1860. The same measurements were used as the in-control data in the control chart 
design. The test data were the remaining measurements 1861–2010. Extreme value 
statistics were used in the control charts with a subgroup size of 500 resulting in eight 
plotted statistics for each measurement. 

On-line damage detection was performed by applying PCA after each new 
measurement. The 15 log-likelihood ratios were projected onto the first principal 
component and a control chart was designed for the projected data. Therefore, the 
control chart had to be re-designed each time after new data arrived resulting also in a 
change of the control limits. The statistics and the corresponding control limits of the 
latest measurement were only plotted and no information about the future 
measurements was available.  
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Figure 2 left shows the on-line EVS control chart for the test data. The two solid 
lines represent the minima and maxima in each subgroup and the dashed lines are the 
corresponding control limits. It can be seen that the detection performance is excellent 
with no false positives or false negatives. It should be emphasized that since this was 
an on-line analysis, the figure also shows that each damage level was detected 
immediately. The damage size is also visible. 

For damage localization, the mean log-likelihood ratio of each sensor is plotted in 
Figure 2 right. Sensor 7 shows the highest value. From Figure 1 it can be seen that 
damage was located halfway between sensors 7 and 8. Sensor 8 also showed a high 
number. However, sensors 1 or 2 measuring vertical acceleration did not indicate 
damage. The damage size is also visible. 

      

Figure 1. Wooden bridge test setup. Accelerometer and damage (D) locations. 

Table 1. Increase of the structure's mass at each damage case and the 
corresponding measurement numbers. 

Damage 
Case 

Added Mass 
(g) 

Mass Increase 
(%)

Measurement 
Numbers 

Number of 
Measurements 

U 
D1 
D2 
D3 
D4 
D5 
U 

0 
23.5 
47.0 
70.5 
123.2 
193.7 

0 

0 
0.065 
0.13 
0.20 
0.34 
0.54 

0 

1–1882 
1883–1902 
1903–1925 
1926–1947 
1948–1967 
1968–1987 
1988–2010 

1882 
20 
23 
22 
20 
20 
23 
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Figure 2. Left: EVS control chart for damage detection. Right: Damage localization. 

CONCLUSION 

Vibration-based on-line structural health monitoring (SHM) in time domain is 
studied. Recursive estimation of the model parameters is often needed. After 
launching the SHM system, the feature covariance matrix can be updated recursively, 
whereas PCA and the projection of all data to the principal subspace must be repeated. 
For PCA, a recursive algorithm [8] was tested, but the result was not satisfactory. 
Nevertheless, PCA for a covariance matrix of size 1515 was not an issue. Instead, 
the projection of the features of all previous measurements to the first principal axis 
proved to be time consuming, because the data were stored in separate files.  
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