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ABSTRACT 
 
The paper is devoted to theoretical and experimental investigations of Lamb wave 

excitation and propagation in multilayered carbon fiber-reinforced plastic plates with 
obstacles. The theoretical modeling is performed in the context of general linear 
elasticity for three-dimensional laminate anisotropic media. It is based on the integral 
and asymptotic representations in terms of Green’s matrix of the structure under 
consideration. Those representations allow one to carry out fast and reliable 
quantitative amplitude and energy analysis of guided waves excited by specific 
sources and diffracted by surface and internal obstacles. In the experimental 
procedures the Lamb waves are generated by piezoelectric wafer actuators and 
measured by a laser vibrometer; permanent magnets placed at both plate sides serve as 
obstacles. 

The influence of material anisotropy and excitation frequency on spatial 
directivity of generated wave fields has been analyzed. In particular, the effect of 
frequency-dependent alternation of the main lobe of the guided wave radiation 
diagram has been revealed and experimentally verified. This phenomenon leads to a 
more complicated tuning procedure for optimal Lamb wave excitation since the 
optimal frequencies ("sweet spots") depend not only on the piezoactuator's shape and 
size but, in addition, on the direction of propagation. Source tuning with accounting 
for this effect leads to clearer diffraction patterns; this is illustrated by experimental 
examples. 
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INTRODUCTION 
 
Many modern layered composite materials exhibit anisotropic mechanical 

properties due to the complexity of their internal structure. This circumstance results 
in more challenging problems for predictive simulation since the patterns of guided 
waves (GWs) generated in anisotropic structures are featured by additional spatial 
angular dependencies of dispersion and amplitude characteristics. In particular, even 
with an axially symmetric source, a focusing of wave energy transfer in certain 
directions of GW propagation from the source may occur. 

It was experimentally and theoretically shown that with a point source, e.g., with 
a focused immersion transducer or with a laser generation, the directivity of GWs is 
specified by the fiber orientation in the composite unidirectional sublayers and such 
radiation patterns is weakly frequency dependent [1-3]. On the other hand, with a 
dimensional source the radiation patterns become more complex and strongly 
frequency dependent. Theoretical investigations of cross-ply laminates driven by 
circular piezoelectric actuators [3,4] have shown that with frequency or source 
diameter increase the main radiation lobe periodically alternates either along the 
upper-ply fibers or in the perpendicular direction. This effect can be theoretically 
explained through the in-phase or out-of-phase interaction of wave packages 
generated by the opposite actuator's edges. Thus, due to the angular variation of the 
mode wavelengths caused by the material anisotropy, the tuned frequencies (“sweet 
spot” [5]) become also angle dependent. 

The present work aims at experimental verification of the effects predicted in the 
context of the theoretical model [3,6], first of all, of the influence of source and 
composite properties on the tuning frequencies, as well as at the demonstration how 
this information can be used in GW SHM. 

 
THEORETICAL BACKGROUND 

 
The theoretical modeling has been performed in the context of general linear 

elasticity for three-dimensional anisotropic solids. It is assumed that a laminate 
composite structure, fabricated from elastic transversely isotropic homogeneous 
sublayers with arbitrary ply orientation, occupies the domain 

:| | ,| | , 0D x y H z        in the Cartesian coordinates 

1 2 3( , , ) ( , , )x y z x x x x (Fig. 1). The sublayers are perfectly bonded with each other. 

The outer sides of the waveguide 0z   and z H   are stress-free except the contact 
area  , to which a circular piezoelectric actuator is attached, and the obstacle contact 
areas iS . The radial stress ( , )r x y  arises in   due to patch radial deformation under 

a driving electric field. In the frequency range of interest (below 500 kHz-mm) the 
latter are well approximated by δ-like traction of uniform magnitude distributed along 

the actuator perimeter ayxr  22 : 

 { cos , sin , }, ( )r r r rH r a        q . 

The contact stress ( , )x yq tie   causes the response of the structure 

1 2 3( , ) { , , }u u u u x  which obeys the elastodynamic equations in displacements  
2

, 0, 1, 2,3 (1)ijkl l jk iC u u i  
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They hold in every sublayer with specific values of the elastic stiffness tensor 
components ijklC  and material density  ; 2 f   is angular frequency, f   is 

frequency in kHz.  
 

 
 

Figure 1. Geometry of the problem. 
 
In the context of semi-analytical integral approach time-harmonic displacements 

( , )u x  are represented via the convolution of the Green’s matrix ( , )k x  for the 
structure with the vector-function q  that can be rewritten in terms of their Fourier 
symbols

 [ ]xyK kF  and [ ]xyQ qF :
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The Cartesian variables x  and the Fourier parameters 1 2( , ) α  are taken in the 

cylindrical and polar coordinates ( , , )r z  and ( , )  ;   is the integration contour, 

going in the complex plane   along the real semi-axis Re 0  , Im 0   and 

bypassing real poles ( ) 0n n     of the matrix K  elements in accordance with the 

principle of limiting absorption.  
The use of the residue technique and the stationary phase method brings explicit 

integral representation (2) to the asymptotic expansion in terms of guided waves  nu : 

 1

1

( ) ( ) (( ) ), (3)
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n n n
n

x O r r 


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z e r u x a  

The amplitude factors nma  are expressed via the residues of the product KQ  from the 

real poles n ; ( )nm n ms s   are wavenumbers of the GWs nu , m  are the stationary 

points of the phase functions ( )sin( / 2)nm n m ms        : ( ) 0n ms   ; Nr is the 

number of real poles n . To constant factors the amplitude functions ( , )nm za  
coincide with the GW modal eigenforms that may be derived using the modal analysis 
technique. The series expansion (3) provides a computationally efficient and 
physically clear analytically-based tool for GW analysis, which already accounts for 
the source influence on the host structure through the vector-function ( , ) Q . 
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In the presence of surface obstacles the scattered wavefield ( , )sc u x  is also 

representable in the form of Eq. (2) but with the unknown contact stress vector-
function ( , )s x yq . The latter can be obtained from the boundary integral equations 

arising from the substitution of the total displacement field into the boundary 
conditions in the obstacle contact area Si [6]. In case of internal volumetric obstacles 
or corrosion the scattered field usc is obtained using the laminate element method [7].  

 
EXPERIMENTAL SETUP 

 
A uni-directional plate with the lay-up 4[0 ]o  and dimensions 1000 1000 2.25   

mm3 manufactured by Carbotec GmbH is used in the experiments. The material 
properties of transversely isotropic prepregs are the following:  

11 109.3C  , 22 13.8C  , 12 13 7.0C C  , 23 5.8C  , 55 66 4.4C C   (in GPa) and 

1500   kg/m 3 .  
The plate is driven by a single circular vertically polarized piezoceramic actuator 

(PI Ceramic GmbH, PIC151 ceramic type) placed at its center (radius of the 
electroded area a = 7.8 mm, thickness b = 0.25 mm).  

The velocity field of the propagating waves is captured on the opposite side of the 
plate by means of a Polytec PSV-400 scanning laser vibrometer and a Tektronix TDS 
1012B two-channel digital storage oscilloscope. The scanning head of the PSV-400 
system is placed 1.312 m above the specimen. A thin reflective film is glued to the 
surface of the plate in the area of observation, which is proved to be a suitable tool for 
improving the laser beam reflection and minimizing the signal-to-noise ratio. 

The actuator is excited by a five-cycle Hann windowed sine tone-burst with a 
central frequency cf  and a repetition rate varying from 30 ms for low frequencies to 

2 ms for the higher ones: 

 
0.5sin(2 )(1 cos ), 0 2

( ) 5
0, 2

c
c

f t
f t t T

V t
t T

    
 

 

For this purpose a Tektronix AFG 3022B two-channel arbitrary signal generator 
coupled with a Develogic WBHV 2A600 amplifier is used. To obtain the frequency 
response in various propagation directions the actuator is driven by a periodic chirp 
generated by the vibrometer hardware and covering the range from 10 kHz to 250 
kHz. The fast Fourier transform is then applied to the measured signals. 

Two powerful permanent magnets in the shape of cylinders serve as surface 
obstacles (diameter d=6 mm). They are fixed at both sides of the plate oppositely and 
can easily be removed or relocated to an arbitrary position. 

 
RESULTS AND DISCUSSION 

 
First, to reveal the influence of the material anisotropy and source dimensionality 

on the GW directivity, two points A(25, 0, 0) and B(0, 22, 0) (mm) in the directions 
along and across the fibers of the composite has been selected for the frequency 
response measurement and simulation (Fig. 1(b)). The plots of the out-of-plane 
velocity magnitude | | | |z zv u  measured at these points are shown in Fig. 2. The 
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curves exhibit alternations of minima and maxima which are typical for dimensional 
sources [5,6,8]. In contrast to the isotropic case [6], local minima and maxima of the 
curves do not generally occur simultaneously due to the difference in wavelengths 
along and across the fiber directions. Therefore, the optimal central excitation 
frequencies cf  are different for different propagation directions. The frequency points 

of local minima and maxima obtained theoretically are marked in Fig. 2 by diamonds 
(for point A ) and dark circles (for point B ). The marks on the upper and lower axes 
are for the maxima and minima, respectively. One can see a good agreement of the 
predicted and measured frequencies.  

 

 
Figure 2. Frequency spectrum of the out-of-plane velocity amplitudes | |zv  at the points A and B 

(experimental measurements). 
 
To illustrate how the proper choice of cf  influences on wave propagation patterns, 

experimental and predicted transient out-of-plane velocities ( , )zu tx  recorded 100 mm 

away from the source in the directions along and across the fibers are given in Fig. 3. 
As expected [6], the 0a  wave packages excited at the frequencies where local maxima 

of | |zv  occur (subplots (a) and (c)) propagate without visible dispersion. On the 

contrary, wave packages in subplots (b) and (d) become blurred, splitting into two 
separate packages. It should be also noted that in the low-frequency range the 
maximum in one of the directions occur almost at the minimum of the counterpart 
one. Thus, selecting, for example, the frequency 100cf   kHz as a global optimum 

for the whole plate monitoring can lead to poor signal quality in the fiber direction.  
As an example, Fig. 4 presents experimental transient out-of-plane displacements 

( , )zu tx  at the point (40,0,0) mm for the plate with the surface obstacle S1 recorded for 

two excitation frequencies 50cf  kHz (a) and 100cf  kHz (b). The reflected field 

pronounces itself as a second wave package arriving after the incident one. In the left 
subplot (a) its amplitude is quite distinguishable and separable from the incident 
waves, whereas in the right subplot (b) it is small and blurred. 

 Finally, though 100cf   kHz is optimal central frequency for the direction across 

the fibers, the reflected field is almost undetectable on a single-point time-history plot 
(Fig. 5, subplot (b)). On the other hand, the root-mean square (RMS) scan of the 
laminate surface displacements ( , )zu tx  exhibits typical diffraction patterns in the 

vicinity of the obstacle 2S , allowing one to identify its position. The reason of such a 
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Figure 3. Influence of  propagation directions and central excitation frequencies on the transient 

normalized velocities ( , )zu tx .  

 
 

 

 
 
Figure 4. Experimental transient displacements ( , )zu tx  for the sample with the surface obstacle S1 

 

recorded at the point (40,0,0) mm (see Fig. 1). 
 
 
 

 
Figure 5. RMS of transient displacements ( , )zu tx  in the case of surface obstacle 2S (a), and single 

point time-history (b) (point (0,45,0) mm). 
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behavior is a comparatively small amplitude of the backward 0a  mode reflected from 

this obstacle due to a strong damping in the direction across the fibers. 
 

SUMMARY AND CONCLUSIONS 
 
Strong frequency dependence of GW directivity in anisotropic layered composites 

actuated by a sized source has been theoretically predicted and experimentally 
validated. This effect should be accounted for a proper frequency tuning of Lamb 
wave based SHM and defect detection in composite plates.  
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