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ABSTRACT 
 
Fatigue assessment for helicopter structures is nowadays a design matter, 

confirmed during the operating life of the machine with a clear inspection schedule, 
thus requiring many machine stops and causing a steep increase of maintenance 
efforts, which arise up to 25% of the whole operating costs. A direct health 
monitoring system able to correctly estimate damage likelihood, position, extent, thus 
coming to the evaluation of the residual useful life (RUL) of the monitored region is 
missing. It could lead to real time knowledge about the damage condition, allowing 
the Condition Based Maintenance (CBM) and maximizing both machine availability 
and safety. The work presented in this article is about the creation of a diagnostic for 
helicopter fuselage Structural Health Monitoring. The main characters involved are 
Finite Element Models (FEM) and algorithms, the former providing a low cost 
knowledge upon which training the algorithms (multilayer Artificial Neural 
Networks) in detecting, localizing and quantifying the damage. The FEM based 
diagnosis can also be used for a preliminary assessment of the algorithm 
performances, before any real test is executed, thus allowing for a significant cost 
saving. The methodology demonstration is described, thus appreciating the real 
performances of the method for a specimen which is representative of the helicopter 
fuselage, consisting of an aluminum skin stiffened through some riveted stringers. A 
sensor network has been designed in order to detect any fatigue damage occurring on 
the structure, then activating the algorithms for damage characterization, in terms of 
crack position and length. 
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INTRODUCTION 
 
In recent years the problem of structural monitoring for the health assessment of 

the operating aircrafts has become a critical research topic [1][2][3][4]. In particular, 
helicopters are very critical aircrafts from a fatigue standpoint. As a matter of fact they 
are subjected to a high number of load cycles. From one hand, low frequency load 
cycles, due to maneuvers of the helicopter, are characterized by a high amplitude and 
are responsible for crack nucleation and propagation. From the other hand, high 
frequency load cycles, due to the rotor aerodynamic interaction with the air, are also 
transmitted to the airframe. Though it is crucial that structures would be designed in a 
way that avoids high frequency cycles participating to crack propagation, it could 
happen that if a crack propagates on the structure (because of maneuver loads) it will 
generate a high stress intensification, thus becoming sensible also to high frequency 
loads. This can cause a sudden failure of the considered region. In addition, the harsh 
environment where the helicopter operates is responsible for corrosion and 
consequently massive crack nucleation. 

As a consequence, the maintenance of helicopter structures is critical because it 
requires very strict intervals for manual structure scanning, often requiring 
dismounting of large portions of the aircraft. The availability of the helicopter is thus 
the key parameter that wants to be optimized. The disposal of a compound 
methodology for the automatic assessment of structural health, able to detect critical 
damages and to characterize them allowing for the residual useful life prognosis, 
would revolutionize the actual maintenance procedures. As a matter of fact, a smart 
network of sensors can be installed on the structure in order to detect, localize and 
quantify crack damages, without requiring any structure dismounting and possibly 
allowing for an on-board SHM. Also the safety parameters could receive some 
benefits from this approach, as this monitoring system might be able to provide 
continuous information to the pilot (or to the maintenance center), thus assisting the 
user in the decision on whether to stop a mission or to proceed until the next 
scheduled maintenance. 

However, many attempts to realize automatic SHM system have been carried out, 
based on many technologies, among which the soundest approaches rely on 
mechanical diagnostic wave propagation in structure [5][6], acoustic emission, 
vibration monitoring, strain field measure [7], comparative vacuum monitoring [8], 
etc. Any approach has its advantages and drawbacks. Nevertheless a common 
problem is that the costs associated to the tests for the interpretation of the acquired 
signal and for crack feature extraction are very high. Especially when dealing with 
aeronautical structures constituted by riveted metallic skin panels, it is important to 
consider that the possibilities for crack position are widespread, thus requiring a huge 
test campaign. Inside this framework, Finite Element Models can be used to generate 
the necessary experience for the interpretation of the raw sensor data acquired from 
the smart sensor network. The approach consists in generating a database of many 
damage models (with variable crack center position and crack length), to be used to 
train an Artificial Neural Network (ANN) system. The advantage of FEM is not only 
the possibility to retrieve information about a huge number of damage cases, but also 
the possibility to obtain a preliminary assessment of the diagnostic performances of 
the system. With the term “performances”, one could indicate the following points: 
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 minimum detectable crack length as a function of crack position 
 crack length quantification error 
 crack center position error   

 
A diagnostic system based upon strain field measures is the object of this study. It 
consists of a series of ANNs trained with FEM simulations of crack damages in order 
to detect a structural anomaly (crack), then to quantify and to localize the damage. The 
diagnostic system is installed on a typical aluminium structure constituted by a skin 
stiffened through some riveted stringers (Figure 1), representative of the rear fuselage 
of a helicopter. The procedure for sensor network design has been addressed in [9], 
coming to the sensor web configuration shown in Figure 1. The optimization of the 
diagnostic algorithm performances has been reported in detail in [10]. The first part of 
this paper is about the presentation of the FE model, the algorithm structure and the 
experimental tests. Follows a second part in which the validation of the detection 
algorithm performances, previously evaluated with only the adoption of FEM 
simulations, is performed. 
 

 
 
Figure 1. Typical aeronautical panel consisting in a skin stiffened through some riveted stringers. 20 
FBG sensors have been applied to monitor crack propagation. 
 

 
PART I: THE FEM-BASED DIAGNOSTIC SMART UNIT 
 

The first part of the paper is aimed at defining the SHM problem at issue. The 
sensors, the smart signal processing algorithms and the Finite Element models (FEM) 
are the three elements in this framework, each of them playing a significant role 
within the diagnostic system. Distributed sensors are organized as a network and 
provide signals to be interpreted for diagnostic and prognostic purposes by means of 
the smart algorithm. Algorithms for signal processing are the “brain” of the SHM. 
They receive the sensor data as a real-time input, and treat them statistically in order 
to infer the structural health condition of the monitored region. However, if only a 
statistical interpretation of the raw sensor data is adopted, an a priori definition of the 
thresholds for the pattern classification is often required and the association of a 
physical condition (i.e. crack length or position) to the classified instance is often 
difficult. Finite Element Models are the solution to these problems. Finite Element 
simulations represent the “virtual experience” of the SHM. They provide some basic 
(and relatively low cost) information that can be used to train the algorithms to 
understand the physical reality behind raw sensor data. 
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The Finite Element Model 
 
The validated FE model used to simulate the real structure behaviour is shown in 

Figure 2. The structure consists of an aluminium skin, stiffened through some riveted 
stringers. Skin and stringer thicknesses have been set respectively to 0.81mm and 
1mm. Both stringers and skin have been modelled with quadratic shell elements 
(S9R5), while rivets have been simulated through three-axes springs. Each stringer 
has been connected to the skin by means of 20 rivets and the distance between two 
stringers is 150mm. In addition, the upper and lower portions of the model have been 
designed in order to simulate the connections to the actuator and to the ground. The 
gripping system has been designed to distribute the load to both the stringers and the 
skin, thus allowing the simulation of stress and strain in the real fuselage. Two 
hundred randomly positioned cracks have been modelled for each 10mm crack length 
step, ranging from 20mm to 100mm. A parametric script (with variables crack center 
position and crack length) has been run in ABAQUS 6.9 software to obtain the 
information needed in terms of damage dependent strain field for each case. 

 

 
 
Figure 2. Strain field in vertical direction on FEM with a crack positioned in the center of the central 
skin bay. 

 
The algorithm structure 

 
Artificial Neural Networks have been selected as the most appropriate tool for 

the diagnosis, mainly because of their ability to “reason” on the basis of the 
experience created during the training phase [11]. This basic knowledge can be 
provided through finite element simulations, thus reducing the cost of the design 
phase. Different ANN structures have to be used according to the required task. 
Three types of ANNs have been trained in order to solve the Anomaly Detection, 
the Localization and the Quantification stages, respectively. The first layer, namely 
Anomaly Detection, receives the strain map at predefined positions and returns a 
value ranging from zero to one. It is a classic example of pattern recognition, which 
is entitled to distinguish between damaged and undamaged cases, thus to generate 
the alarm. After that, the function fitting algorithms have been trained to understand 
the physical functions that correlate the strain map to the position and the level of 
the damage. A standard feed-forward Neural Network trained by back propagation 
of errors has been adopted for each layer. More details about the ANN design are 
provided in Table 1. 
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Table 1. Parameters for Artificial Neural Network design. 

Level ANN type Input layer Output layer 
Hidden layer 
Nr. 

Hidden 
layer 
nodes 

Training strategy 

Anomaly 
Detection 

Pattern 
Recognition 

Strain map at 
sensor location 

Damage index in 
[0,1] range (alarm 
threshold at 0.5) 

1 15 
Levenberg-
Marquardt 
backpropagation 

Localization 
Function 
Fitting 

Strain map at 
sensor location 

[X,Y] position of 
crack center 

1 15 
Levenberg-
Marquardt 
backpropagation 

Quantification 
Function 
Fitting 

Strain map at 
sensor location 

Crack length 1 15 
Levenberg-
Marquardt 
backpropagation 

 
During ANN training, available data are usually randomly assigned to the three 

subsets, namely training, validation and testing (refer to [10] for details about ANN 
training procedure). This causes to obtain a different optimization every time the 
training function is activated, generating slightly different synapsis weights each time 
the ANN is trained. The robustness of the algorithm appears decreased if only one 
single ANN is used to evaluate the structural integrity. It has thus been decided to 
train 50 ANNs for each diagnostic level presented in Table 1, taking as output the 
average of the values obtained from all 50 ANNs. 
 
The experimental test – Sensors and test rig 

 
Four panels like the one reported in Figure 1 have been tested for dynamic fatigue 

crack propagation. A sinusoidal load with 12Hz frequency, 35kN peak load and load 
ratio (R) equal to 0.1 has been applied. 20 Fiber Bragg Grating sensors have been 
applied on each panel in order to perform the structural diagnosis (sensor network 
configuration has been optimized in [9]). FBG technology has been selected among 
the available technologies for strain sensing, having several advantages among which 
are light weight, low power consumption, immunity to electromagnetic interference, 
long lifetime and high sensitivity. Furthermore, they don’t require initial and in-
service calibrations and are affected by a very low signal drop. From an economic 
point of view, the cost of using the FBGs is being reduced because of their extensive 
use in industry. Moreover, the multiplexing option, or the ability to photo-write 
multiple FBGs within a single optical fibre (the allowed number is strictly dependent 
on the maximum strain to be measured) is becoming particularly attractive for smart 
sensor network design. This technology allows reducing the logistic impact due to the 
installation of many sensors for large area scanning. 

The same damage configuration has been studied in all the tests, that is to say a 
crack in the center of the central skin bay, like visible inside Figure 1. The damage has 
been artificially initiated in order to control the position and to study the repeatability 
of the test too. The signals coming from the 20 sensors have been acquired, 
normalized [10] and processed with the ANN structure introduced above, during 
crack propagation. Relative results are reported in Part II of the present paper.     
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PART II: VALIDATION OF THE FEM-BASED DIAGNOSTIC UNIT 
 
The FEM trained algorithm structure has been tested before with FEM simulated 

crack propagations, nucleating from the positions indicated inside Figure 3. Then 4 
real dynamic fatigue crack propagation tests have been executed in order to appreciate 
the reliability of the algorithm performance evaluation made with only FEM 
calculations. Concerning the FEM performance evaluation of the algorithm, the output 
of each diagnostic layer (crack detection, quantification and localization) is provided 
as a distribution due to the parallel running of 50 ANNs for each position in Figure 3. 
The 95% σ-band of the distribution is reported in Figures 4, 5 and 6, respectively 
referring to the anomaly detection, damage quantification and localization tests. The 
compliance of algorithm performance in laboratory environment with the predicted 
capabilities gained with FEM simulations can be appreciated in the same figures.  

 

 
 

Figure 3. crack center positions over the panel used to test the diagnostic algorithm performances (with 
FEM simulated crack propagation). 

 
Concerning the anomaly detection algorithm, it is clear in Figure 4 that the system 

classifies as undamaged a case with crack shorter than 40mm. After this threshold, the 
ANN output starts increasing, being the damage effect over the measured strain field 
more effective. It is also clear that the structure is classifiable as damaged when the 
crack exceeds 80mm. The 95% σ-band inside the 40mm – 80mm range is wider, 
being the ANN sensitivity particularly high inside that range. It is important to notice 
that the ANN behavior registered during the four real test cases is absolutely in 
compliance with the 95% σ-band FEM prediction. The irregularity manifested for 
case 2 is due to a sudden change in environmental temperature (test 2 has been 
executed without temperature compensator).       

Focusing on damage quantification, the 95% σ-band reported in Figure 5 indicates 
that the algorithm reliability should increase while moving toward longer cracks, with 
higher and well defined effects over the measured strain field. Moreover, the 
confidence boundaries of the algorithm output (evaluated with FEM simulations) 
appear to be centered on the target crack length, apart from the case when cracks 
shorter than 20mm – 30mm are going to be measured. The effect of shorter cracks 
over the strain field is lower than the noise level, considering with noise any 
uncertainty inside the diagnostic system. Again, it can be noticed how the evaluation 
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of the diagnostic system behavior with FEM simulations appears to be reliable for the 
appreciation of real algorithm performances. In particular, neglecting the system 
behavior for cracks shorter than 30mm, the quantification output for real tests falls 
inside the 95% σ-band of FEM distributions for the majority of cases. 

Finally, some considerations about crack localization capabilities can be made 
referring to Figure 6, where the distance of the estimated position from the target one 
is plotted as a function of crack length. The first thing to be discussed is the reduction 
of the 95% σ-band while moving toward longer cracks. This means that the ANN 
estimation of crack position converges toward the right location while the damage 
becomes more effective over the strain field. This behavior is not reflected in the 4 
experimental tests, probably due to the fact that the same damage with the same crack 
center position has been tested in all the four cases. On the other hand, FEM 
distributions are obtained with simulated crack propagation tests starting from the 
crack center positions indicated in Figure 3 and using 50 ANN in parallel trained with 
different randomly sampled damage databases. The algorithm performance for 
localization during tests is well described through FEM simulation, at least up to 
70mm of crack length. Over this threshold, no general improvements have been 
recorded in real tests, in contrast with the FEM based prediction. 

 

 
Figure 4. Anomaly detection output as a function of crack length (Real tests performance evaluation). 
The 95% σ-band predicted with FEM is also provided as a term of comparison. 
 

 
Figure 5. Damage quantification output as a function of crack length (Real tests performance 
evaluation). The 95% σ-band predicted with FEM is also provided as a term of comparison. 
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Figure 6. Error on crack position estimation as a function of crack length (Real tests performance 
evaluation). The 95% σ-band predicted with FEM is also provided as a term of comparison. 
 
 
CONCLUSIONS 

 
A FEM based methodology for fatigue damage detection, localization and 

quantification has been presented inside this paper. In particular, FEM has been used 
to train an Artificial Neural Network structure in recognizing damage characteristics. 
Moreover, FEM simulations have also been used to test the algorithm structure with 
different damages thus coming to an estimation of the algorithm performances. A test 
campaign consisted in 4 dynamic fatigue crack propagation tests and has been used to 
validate the performances estimated with pure FEM simulations in terms of: 

 
 Minimum detectable crack length 
 Uncertainty in crack length inference 
 Error in crack position inference 

 
It has been demonstrated that it is possible to use FEM for a preliminary estimation of 
diagnostic system performances, thus validating the methodology for a typical 
aerospace panel constituted by a skin, stiffened through some riveted stringers. 
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