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ABSTRACT 
 

The purpose of damage identification procedures in large structures is to assess the 
stiffness distribution in a specific zone (master), while minimizing the number of 
measurements on the other zones of the structure (slaves).  In order to achieve this 
goal a sub-structuring strategy is usually adopted. The reduction in the measurement 
and the computational efforts is achieved by replacing the slave substructures with 
other ones with a much smaller number of sensors and Degrees of Freedom (DoFs), 
respectively. Since the reliability of the identified damage, involved in such 
condensation, is strongly dependent on the sensors location in the slave substructures, 
this study offers to use the Optimal Modal Reduction (OMR) technique 

The OMR technique minimizes the error of the modal parameters (frequencies 
and mode shapes) of the master structure, in such a way that the DoFs obtained from 
this technique indicate the optimum sensors location in the slave sub-structures. The 
identification procedure is then applied only to the unknown parameters of the master 
structure. 

This study demonstrates the efficiency of the OMR in damage identification 
procedure through multi-story shear building model. A Genetic Algorithm (GA), 
based optimization procedure, is applied for minimizing the differences between the 
simulated measured modal dynamic properties and the analytical one. In order to 
simulate field conditions the effect of noisy signals and limited number of sensors are 
considered.  
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INTRODUCTION 
 

For vibration-based structural health monitoring and damage identification 
procedures, it is not practical to assess a large structure with a complete set of 
measurements, mainly due to the limited number of sensors and the difficulty in field 
instrumentation. Moreover, identifying a large number of unknown parameters in a 
full structure causes difficulties in convergence of the numerical model. In order to 
handle this problem, a sub-structuring strategy is usually adopted. The main idea is to 
separate the structure into several substructures that are divided into master and slave 
substructures. The reduction in computational effort is achieved by replacing the slave 
substructures with equivalent ones with a much smaller number of Degrees of 
Freedom (DoFs). 

Applications of model reduction techniques for damage identification procedures 
were mainly focused on the coupling forces between the substructures. When a large 
structure is divided into substructures, each substructure can be taken as an 
independent structural system. The coupling forces become pseudo dynamic loads 
acting on the adjacent substructures, and they can be identified from the measured 
responses of the substructures. The changes in the coupling forces can subsequently 
be used to identify local structural damage if there is any. Law et al. [1] offered to use 
measurement of one substructure to detect local damage in another substructure, by 
comparing the changes of the coupling forces acting between the substructures. The 
Virtual Distortion Method (VDM) for damage identification of trusses and beams, 
using the time domain approach, has been offered by Kolakowski et al. [2]. The 
method was improved by Swiercz et al. [3] for the frequency domain approach. Based 
on the VDM, Hou et al. [4] proposed a substructure isolation method. In their method 
the concerned substructure was numerically separated from the global structure by 
adding virtual supports on the substructure interface. In order to avoid the need for 
complete measurement, Tee et al. [5] offered to identify the entire structure using a 
divide-and-conquer approach that invokes for each substructure the concept of model 
condensation. 

The main conclusion, which can be drawn from the above studies, is that the 
reliability of the identified damage is strongly dependent on the sensors location in the 
slave substructures. Moreover, the sensitivity of the measured response (strains, 
displacements, accelerations etc.) decreases when the distance between the local 
damage and the measured locations increases. 

In order to avoid these problems, this study uses the Optimal Modal Reduction 
(OMR) technique, Givoli et al. [6], as a sub-structuring strategy. The OMR technique 
minimizes the error of the main structure response involved in such condensation. 
Therefore, the DoFs, in the slave sub-structures, obtained from the OMR technique 
indicate the optimum sensors location in the slave sub-structures. The identification 
procedure can then be applied only to the unknown parameters of the master sub-
structure while assuming that the slave substructures are healthy ones. 

The current study demonstrates the efficiency of the OMR in damage 
identification procedure. The identification procedure estimates a Virtual Damage 
Vector (VDV) by minimizing the differences between the modal parameters of the 
structural model and the measured one.  The VDV is defined as the relative equivalent 
stiffness of each segment in the main structure. Thus the identification procedure 
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searches the optimal VDV, in this study by using a Genetic Algorithm (GA) 
procedure. 

Several studies used the GA for damage identification procedure, among them 
Mares et al. [7] which applied the GA, including rank-based selection, in truss 
structure. Friswell et al. [8] proposed the GA in cantilever beam structure, using an 
objective function that combined natural frequencies and mode shapes, and Ananda 
Rao et al. [9] that proposed a method for locating and quantifying damage in structural 
members by minimizing the differences between the simulated measured frequencies 
and the one obtained by the structural model. 

The paper is divided into four main parts. Firstly, the sub-structuring strategy 
using OMR technique is presented. Secondly, the damage identification procedure 
using genetic algorithm is presented. Thirdly, numerical example is presented. Finally, 
a discussion of the result is given.  

 
SUB-STRUCTURING REDUCTION STRATAGY 

 
Since our interest is to identify damage in a specific region within a large 

structure, it will be determined as the main (master) sub-structure, while the other 
regions will be determined as the slave sub-structures. Our goal is to apply the 
identification procedure only to the physical parameters of the master while 
minimizing the monitoring efforts on the other sub-structures. It can be demonstrated 
in Figs. 1a and 1b. 

In order to satisfy this goal, the OMR technique is adopted as the sub-structuring 
strategy. The DoFs obtained from the OMR indicate the optimum sensors location in 
the slave sub-structures. At the end, a reduced system is obtained, satisfying similarity 
of the internal forces on the interface between the reduced and the full model. Fig.1c 
illustrates the original and the condensed structural model according to the OMR. The 
identification procedure can then be applied only to the main structural parameters. 

Mathematically specking, lets as consider a linear discrete un-damped structure, 
the equations of motion of the structure can be written as: 

     ttutu FKM   (1)

where M is the global mass matrix, K is the global stiffness matrix, F(t) is the global 
load vector, and u(t) is a displacement vector. Since, as was stated before, the idea is 
to separate the structure into main and attached parts, which interact with each other 
through the interface. The vector u(t) will be similarly partitioned into several sub-
vectors, depending on the number of slave sub-structures attached to the main, 
uT={um, ub1, ub2, ub3, us1, us2, us3…}, representing the DOFs inside the main 
subsystem, on the interfaces (ub),  and inside the slave subsystems (us), respectively. 
Assuming that the slave sub-structures interact only through the main, the OMR 
procedure can be applied to each substructure separately, and the displacement vector 
can be considered as uT={um, ub, us} each time. Thus eq. (1) can be rewritten in a 
partitioned form as:  
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Figure 1. Original and condense structural model. 
 
It is also assumed that the external vibration loading applied only to the main 

structure, as well as all non-zero initial conditions, if there are any. Since our goal is to 
reduce the number of sensors/DoFs in the slave substructure, having Nr<<Ns, were Nr 
and Ns are the number of DoFs in the slave substructure of the full and reduced 
models, respectively. The linear system is therefore reduced to the following one as: 
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where ur(t) is the Nr dimensional unknown vector associated with the reduced 
subsystem. 

The reduction procedure is based on minimizing the differences between the 

internal forces in the interface of the full,  tfb , and the reduced systems,  tfb

~
, which 

are defined by the set of equations of the interface as follow: 
For the full model: 

 tfbsbssbsbbbbbbmbmmbm  uKuMuKuMuKuM  (4)

and for the reduced model: 

 tfkmkm brbrrbrbbbbbbmbmmbm

~
 uuuuuKuM  (5)

The goal of the sub-structuring reduction strategy is to minimize the difference  
between these internal forces with respect to the sensors location in the slave sub-
structures. 
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The OMR technique 

 
The OMR technique defines the norm of the distance between these two vectors 

(eqs. 4 and 5) as: 

        
T

bbbb dttftf
T

tftf
0

2~1~  (6)

where T is the time span of interest. Then it minimizes  with respect to the sensors 
location in the slave sub-structure. It can be interpolated by defining a modal weight 
for each set of sensor. The OMR procedure is given in details in Barbone et al. [11], 
Givoli et al. [6] and Tayeb and Givoli [12]. They found an upper bound for  as: 





s

r

N

Nn

T
nn

1

ss  (7)

where sn was defined as follow: 

nbs
n

nbsnn 


 KMs
1

  (8)

where n and n are the normalized eigenvalues and eigenvectors for the slave 
substructure’s matrices. sn can be interpolated as the modal weight of each set of DoFs 
in the slave sub-structures. After ranking the contribution of the mode according to 

T
nnss , the location of the optimum sensors in the slave is obtained, and the mass and 

stiffness matrices of the reduced system (eq. 3) can be calculated as follow: 
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(9)

 
where Ir is identity matrix (NrxNr), 

2
rΩ  is a diagonal matrix (NrxNr) whose diagonal 

entries are the squared frequencies 2
n of first Nr modes, and rΦ is matrix (NsxNr) 

whose columns are the first Nr eigenvectorsn.  
 After the sensor locations in the slave sub- structure were specified, and the 

reduced system was defined, the next step is to assess the stiffness distribution of the 
main sub-structure segements by an appropriate identification procedure. 
 
IDENTIFICATION PROCEDURE 

 
In this study, the identification procedure is based on minimization the differences 

between the measured modal dynamic response of the structure and the analytical 
one. The procedure defines a “Virtual Damaged Vector” (VDV) which infers the 
stiffness degradation at each of the elements of the main structure. Several 
optimization procedures can be applied using a desired cost function. In order to 
obtain a robust and global minimum the Genetic Algorithm (GA) is applied. 
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Genetic Algorithm 
 

In the GA, a population of Np candidate solutions is first generated randomly. In 
our case, the candidate solutions are combination of the segments stiffness of the main 
structure (i.e. the population is composed of Np trial vectors, each of which represents 
a different combination of stiffness at the main 

structure,  miiii VDVVDVVDVVDV ,2,1, ,...,, ; jiVDV ,  is the j component of vector 

iVDV , m is the number of segments in the main structure). The GA explores the 
search space by vector of various candidate solutions. At each iteration (“generation”), 
“mutant vectors” ( iV ) are formed by linear interpolation of trail vectors randomly 

selected from the population. A new generation of trial vectors ( iU ) is then formed by 

the “crossover” process, whereby the components of the mutant vectors are mixed 
with those of the trial vectors in the previous generation. If the trial vector yields a 
lower cost function value than the target vector, the trial vector replaces the target 
vector in the following generation. This last operation is called selection. 

In this study, the cost function corresponded to the minimum of the differences 
between the measured and the analytical modal parameters, it is composed from the 
following two terms: 
Modal Assurance Criteria (MAC): 
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The norm of the frequencies: 
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NUMERICAL EXAMPLES 

 
The efficiency of the OMR in damage identification procedure is demonstrated 

through a multi-story building model, Fig. 2a. Assume that we would like to assess 
the stiffness distribution in-between the eighth and the thirteenth story. According to 
sub-structuring strategy, the structure will be divided into three sub-structures: two 
slaves and in-between the main sub-structure, see Fig. 2b. Applying OMR technique, 
the optimum sensors location, in the slaves, is specified. It is demonstrated in Fig. 2c. 
The identification procedure is then applied only to the segments in the main 
substructure. 

This study is theoretical, but in order to simulate field conditions, random noises 
(5% random error) were added to the simulated structural response. Since each case is 
associated with a specific distribution of random noise. Repeated evaluation of 20 
cases, each of which with a different random noise distribution, resulted in a 
population of solutions, for which the mean value of the identified stiffness is given in 
Fig. 3. In this case 25% stiffness reduction of the tenth story was considered. It is seen 
that good estimation for the stiffness distribution has been obtained.  

In order to demonstrate the efficiency of the OMR reduced structural model, the 
identification procedure has been applied to the full structural model with the same 
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numbers of sensors (installed evenly in the structure - in each even story) and with the 
same noise level. In this case the identification procedure absolutely failed to identify 
the stiffness distribution.  
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Figure 2. Structural model of 2th shear building. 
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Figure 3. Estimated stiffness distribution (5% random noise). 
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SUMMARY AND CONCLUSIONS 
 

The study demonstrated the efficiency of the OMR technique, as a sub-structuring 
strategy, in damage identification procedure through multi-story shear building model. 
A Genetic Algorithm (GA), based optimization procedure, is applied for minimizing 
the differences between the simulated measured modal dynamic properties and the 
analytical one. The effect of noisy signals and limited number of sensors are 
considered.  

The reliability of the results, even in this simple structural model, is strongly 
depended on various factors, such as: the number of sensors (the total, in the master, 
in the slaves and the ratio between them), the noise level, the damaged severity and its 
location etc. Therefore, from these aspects, the study is not yet completed and further 
investigation should be performed in order to bring this concept to be fully realized in 
the structural damage identification procedure.  
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