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ABSTRACT 
 
3D vibration measurement is achieved using one laser scanning vibrometer(LSV) 

and Light Detection And Ranging(LIDAR) by moving the LSV to three arbitrary 
locations from the principle that vibration analysis based on the frequency domain is 
independent of the vibration signal based on time domain. The proposed algorithm has 
the same effect as using three sets of LSVs. It has an advantage of reducing the costs. 
Analytical approach of obtaining in-plane and out-of-plane vibration of surface is 
introduced using geometrical relations between three LSV coordinates and vibration 
measured at three different locations.  

 
INTRODUCTION 

 
Accelerometers are typically used to measure vibration in conventional tests of 

bulky machinery structures. However, these contact-type sensors have several 
disadvantages: their loading effect, which can affect the frequency response for a light 
and flexible structure; the tethering problem, which makes it hard to measure the 
vibration of a location apart from the sensors; and sensitivity to electromagnetic 
interference (EMI) effects, which makes it hard to measure vibration of power 
electronic components. Moreover, the use of contact-type sensors necessitates the use 
of multiple sensors when the vibration mode shape of a structure must be 
investigated[1]. 

These problems can be mitigated by using a non-contact laser Doppler 
vibrometer[2] (LDV). An LDV provides the velocity signal of an object using the 
Doppler frequency change that occurs due to interference between incident light and 
scattered light that is reflected from the surface of a moving object[3][4]. The LDV is  
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used to detect delamination and disbond in composite plates. Using Doppler effects, 
LDVs are considered a technology that could rapidly and correctly measure vibration at 
a desired location. The vibration at multiple points can be easily measured by using a 
laser scanning vibrometer(LSV) in which laser beam is rotated by using an electric 
motor.  

However, LSVs can only measure speeds parallel to the laser beam direction; i.e., 
they cannot detect vibration when the surface has vibration that is perpendicular to the 
laser beam direction. Therefore, three sets of LSVs are required in order to measure 
components of 3-dimensional (3D) vibration. The need for 3D measurements has 
increased since various industries have become interested in more accurate and 
high-speed measurements. For example, Bendel et al.[5] measured the vibration of 
power tools using a 3D scanning laser Doppler vibrometer (SLDV) to investigate 
vibration characteristics. In 2006, Miyashita et al.[6] proposed a method for measuring 
3D vibration by calibrating the angles and locations of three sets of LDVs. Malley et 
al.[7] conducted research to search for landmines buried underground by acquiring the 
3D vibration information obtained. 

The use of three sets of LSVs, however, has a notable disadvantage of high cost. 
For 3D vibration measurement on an arbitrarily surface, it is possible to measure 
vibration of the surface at three different locations using one LSV pointing to the same 
measurement points. The proposed method has the same effect as using three sets of 
LSVs since a vibration analysis based on the frequency domain is independent of the 
vibration signal based on time domain measured simultaneously. Furthermore, the 
three different locations are easily obtained using a shape measurement device such as 
a laser scanner from the relative geometrical information between the shapes measured 
at different locations. Hence, the proposed method has an advantage of relieving the 
use of a mechanical frame to determine the relative geometrical relations employed in 
the conventional 3D vibration measurement as well as cost reduction. 

 
PRINSIPLE OF PROPOSED 3D VIBRATION MEASUREMENT 

 

           
(a)                                                                 (b) 

Figure. 1. Comparison of (a)conventional 3D LSV and (b)proposed pseudo 3D LSV. 
 

The conventional method for 3D vibration measurements is composed of three sets 
of LSVs and one set of shape measurement device such as LIDAR, as shown in Fig. 
1(a). From the vibration and geometric shapes measured respectively from the LSVs 

2



and LIDAR, in plane and out of plane vibration components on the measured surface 
are acquired. Fourier transforms of the time signal into frequency, out-of-plane, and 
in-plane vibration characteristics of an object are consequently performed. However, 
this method costs too much to be used for industrial applications. In addition, there are 
measurement constraints if the measurement locations are constrained by a mechanical 
frame. In order to mitigate the problem, this paper proposes an algorithm in which only 
one LSV with no mechanical frame is used for 3D vibration measurements.  

The proposed system consists of one LSV and LIDAR (Fig. 1(b)). The LSV moves 
to three arbitrary locations to measure the vibration, while the LS is used to obtain the 
geometric relation between the LSV and an object. The proposed system has the same 
effect as using three sets of LSVs since a vibration analysis based on the frequency 
domain is independent of the vibration signal based on time domain measured 
simultaneously. As such, the proposed method can reduce equipment costs.  

 
Figure. 2. Relationship between actual speed at arbitrary measurement point on object and speed 
measured from 3 different measurement locations.  
 

Figure 2 presents the geometric relations of the coordinate systems ( 1 1 1x y z ), 

( 2 2 2x y z ) and ( 3 3 3x y z ) obtained by moving one LSV to three different locations. The 
origins of each coordinate system are attached to the scanning mirrors of the LSV. A 
local coordinate system ( L L Lx y z ) is defined for each measurement point at the surface. 

The direction of the Lz  axis of the local coordinate system ( L L Lx y z ) is defined as being 

perpendicular to the surface of the measurement point, whereas the direction of the Lx  

axis is defined as being parallel to the 1 1x z  plane. Then, the direction of the Ly  axis is 

defined as the outer production of the Lz  and Lx  axes. The vibration measured at the 

three measurement locations is defined as 1V , 2V , and 3V  respectively, and the angles 

between each axis of local coordinate system ( L L Lx y z ) and 1V , 2V , and 3V  are 

defined as k  , k ,  and k ; where k=1,2,3. For simplicity, in Fig. 2 the angle between 

each axis of the first coordinate system ( 1 1 1x y z ) and 1V  is expressed as 1 , 1 ,  and 1 . 
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Next, the vibration of the surface xV , yV , and zV  are obtained using, the angles ( k  , 

k ,  k ) and vibrations ( 1V , 2V , 3V ) as indicated in (2.1) [8]. 
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THE TRANSFORMATION MATRIX BETWEEN THE COORDINATE 
SYSTEMS 

 
We propose a method for obtaining the transformation matrix between the 

coordinate systems defined in section. 2 by comparing the curved surface information 
measured using a LIDAR at each measurement location. Figure 3 shows the shape of 
the object measured at three measurement locations by using a LIDAR. The arrows are 
normal vectors that are perpendicular to the surface. 

 
(a)                                       (b)                                       (c) 

Figure. 3 Measurement shape and normal vectors at 3 different measurement locations. 
 
The normal vectors of measurement points are obtained using the method of mean 

weight by areas of adjacent triangles (MWAAT)[9]. The surface measured at the 
different coordinate systems ( 1 1 1x y z ), ( 2 2 2x y z ) and ( 3 3 3x y z ) and the normal vectors are 
shown in Fig. 3. The normal vector set at every measurement point is then expressed as  
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where k =1, 2, 3. 
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Figure  5 Change of axis angle by the transformation matrix. 

 
The normal vector sets obtained respectively at the coordinate systems ( 2 2 2x y z ) 

and ( 3 3 3x y z ) can be coincided with the normal vector set obtained at the coordinate 

systems ( 1 1 1x y z ) if they are rotated at angles that are represented in the transformation 
matrix.  

Suppose that the coordinate system ( 2 2 2x y z ) is obtained by rotating the coordinate 

system ( 1 1 1x y z ) by 12  based on the 1y axis and 12  based on the 1x  axis rotated from 

the 1x  axis by 12  as shown in Fig. 5. The coordinate systems ( 3 3 3x y z ) is similarly 

obtained by rotating the coordinate system ( 1 1 1x y z ) by 13  based on the 1y axis and 13  

based on the 1x  axis.  

The normal vectors  
2 2 2

s x y z
n and  

3 3 3
s x y z

n  represented in coordinate systems ( 2 2 2x y z ), 

( 3 3 3x y z ) can be transformed into the normal vector  
1 1 1

s x y z
n  represented in the 

coordinate system ( 1 1 1x y z ) using transformation matrices 12R , 13R  and  such 
 

   
1 1 1

1 ,1
k k k

s k s s kx y z x y z
  n R n e                                        (3.2) 

where k=2, 3; 
 
Similarly, suppose that the coordinate system ( L L Lx y z ) is obtained by rotating the 

coordinate system ( 1 1 1x y z ) by 1 L  based on the 1y axis and 1L  based on 1x  axis. Then, 

the normal vector  
L L L

s x y z
n  represented in coordinate systems ( L L Lx y z ) can be 

transformed into the normal vector  
1 1 1

s x y z
n  represented in the coordinate system 

( 1 1 1x y z ) using transformation matrices 1LR . 
From the rotation angle between the coordinate systems, the transformation 

matrices 12R , 13R  and 1LR  are calculated as 
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where k=2, 3, L; 
 

Note that ,12se , ,13se  and ,1Lse  are errors associated with normal vectors 
experimentally obtained from the surface information using the laser scanner such as 
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where k =2, 3, L.  
 
Then, 12R , 13R  and 1LR  are obtained from angles that minimize the sum of errors, 

,1 LSM k  in each measurement point using the least squares method, such that 
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where k =2, 3, L.  
 

IN-PLANE AND OUT-OF-PLANE VIBRATION 
 

 
Figure. 6 Direction vectors of laser beam. 

 
Suppose that the coordinate of a measurement point sP  in three coordinate systems 

( 1 1 1x y z ), ( 2 2 2x y z ) and ( 3 3 3x y z ) are obtained using a laser scanner as 
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vectors 1P , 2P  and 3P  are laser direction vectors pointing toward the origin of each 
coordinate system from the point sP , respectively. They have magnitudes of distances 

from sP  to the origin of each coordinate system. Then, 1P , 2P , and 3P  can be 

represented in vector forms as 
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 

2 2 2
2 x y z

P  and  
3 3 3

3 x y z
P  can be transformed into vectors represented in the coordinate 

system ( 1 1 1x y z ) using transformation matrixes 12R  and 13R  such that  
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Knowing that L̂i , ˆ
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coordinate system ( 1 1 1x y z ) using transformation matrix 1LR  such that 
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Then, we have the following: 
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where k=1,2,3 
And finally:  
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where k=1,2,3 
Then, xV , yV , zV   are obtained using Eq.(2.1) 

 
CONCLUSION 

 
In this paper, we introduced the algorithm for 3D vibration measurement of the 

surface using proposed system. The proposed system has advantage of reducing 
equipment costs. Using the geometrical relation obtained by LS and three vibrations 
obtained from each LSV measurement, in-plane and out-of-plane vibration of one 
arbitrary measurement point are measured. These procedures are applied on every 
measurement point. From the in-plane and out-of-plane vibrations of all measurement 
point, we can get several 3D mode-shapes that will be more helpful to understand 
property of the object. 
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