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ABSTRACT 
 
In order to design an appropriate structural health monitoring system, it is crucial 

to develop a methodology that incorporates the costs of each possible decision/action 
able to be taken with respect to each target damage state of the structure.  To that end, 
this paper presents a framework based on Bayesian experimental design for choosing 
the optimal system for a given scenario.  The cost parameters that govern the 
optimization are varied to represent different criteria that arise in different 
applications.  Among these are situations where Type I error control is critical, where 
Type II error minimization is most important, and where minimal sensor count is 
critical.  The proposed approach is then applied to data obtained from ultrasonic 
interrogation of a geometrically-complex, three-story frame structure with bolted 
joints. 

 
INTRODUCTION 

 
In the context of this study, the goal of implementing an SHM system is to 

minimize the total cost of operating the structure over its lifetime.  All of the intended 
benefits of SHM—for example, improved reliability and life-safety, reduced 
downtime due to unexpected maintenance demands, the ability to adjust operation 
based on the state of the structure, lower costs through maintenance and performance 
optimization—may be expressed in terms of a cost-savings to the owner.  Likewise, 
instrumenting the structure bears costs: the price of the sensors and data acquisition 
equipment, added weight, power consumption, and possible performance loss may be 
relevant depending on the application and particular SHM system used.  Once these 
various costs have been identified and quantified, they may be used to design the 
SHM system which meets the goal of minimizing total cost to the user by 
incorporating them in a process known as Bayesian experimental design (BED). 
_____________ 
Colin Haynes and Michael Todd, Dept. of Structural Eng., UC San Diego, 9500 Gilman Dr. 
MC 0085, La Jolla, CA 92093-0085 
 

6th European Workshop on
Structural Health Monitoring - Poster  3 

 
License: http://creativecommons.org/licenses/by/3.0/ 

 

1



This study presents a case study in BED with the design of an ultrasonic guided 
wave structural health monitoring (UGWSHM) system for use on a bolted frame 
structure.  UGWSHM utilizes elastic waves, typically excited by piezoelectric sensor-
actuators, to monitor large regions of structures.  These elastic waves are scattered 
upon interaction with geometric features in the structure (including damage) and 
reflected waves are then received at each sensor location [1].  By comparing to 
waveforms received at a reference state when the structure is known to be damage-
free (known as “baselines”), differences in the scattered waveforms may be 
interpreted as indicating damage.  An appropriate feature extraction process may then 
be selected to arrive at a decision of the structural state based on the information 
gathered.  In this work, data from the bolted frame is fed into the BED process, and 
the optimal solutions over a range of system-related costs are studied. 
 
EXPERIMENTAL PROCEDURE 

 
The data required for running the BED optimization was obtained from UGW 

inspection of a bolted frame structure.  The structure is shown in Figure 1.  It has three 
stories and 19 total elements, each made of 2-inch-wide  by 1/8-inch-thick (5.1 cm by 
3.2 mm) steel plates in 12 and 24 inch (30.5 and 61.0 cm) lengths.  The elements are 
joined by steel angle brackets connected with two 1/4-inch-diameter (6.4 mm) bolts 
on each side. 

  

 
Figure 1. Bolted frame structure. 

 
Sixteen PZT sensor-actuators were used to instrument the structure.  The actuation 

signal used in this case was a Gaussian-modulated sinusoid with a center frequency of 
135 kHz.  At this frequency and in this structure, it was determined that the sensors 
predominantly produce waves in the first asymmetric mode (A0).  Received signals (in 
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both pitch-catch and pulse-echo modes) were recorded on a National Instruments data 
acquisition system at 2.5 MHz. 

Two damage modes were chosen for this test.  First, connector preload loss was 
simulated by loosening several bolts, one at a time, in two increments.  The second 
form of damage consisted of applying a magnet along one of the elements, which 
simulates any form of mid-element damage that reflects ultrasonic waves (e.g. 
cracking, corrosion).  The differences between these forms of damage—location on 
the structure and the magnitude of the reflections (which are much higher for bolt 
loosening)—require different strategies for optimal detection. 
 
FEATURE EXTRACTION 

 
With raw data now recorded, the various waveforms must be converted into 

decisions on the damage state of the structure.  This process is commonly known as 
feature extraction.  The first step is to assess what part of the collected data is relevant 
to distinguishing damaged and undamaged cases.  First, the signal is matched filtered 
by convolving the received signal with the actuation signal.  This procedure limits the 
frequency content to the frequencies at which energy is input, under the implicit 
assumption that the data acquisition process is linear. 

Next, a process known as optimal baseline subtraction (OBS) is applied to 
determine whether changes in the structure have occurred due to damage, while 
simultaneously providing some environmental compensation [2].  In order to use this 
technique, a database of baseline measurements must be taken when the structure is 
known to be in an undamaged condition.  These measurements should span all of the 
environmental states the structure is expected to experience in operation.  When the 
system is subsequently put in service, for each measurement taken, the nearest 
baseline (measured by some norm) is subtracted from it.  The magnitude of the 
resulting residual should be near zero if the structure is undamaged, whereas damage 
is assumed to cause changes not found in the baseline set, causing the magnitude to 
rise substantially.  Since the phase of the residual signal is highly uncertain, the final 
result is enveloped to remove the phase so that only incoherent detection is performed. 

Finally, each waveform must be reduced to a scalar value that can be compared to 
a threshold.  In this work, the energy metric (sum-square of the signal) will be used, 
although the BED procedure is independent of the type of feature selected.  (In fact, 
BED may be used to determine the optimal feature.)  Next, we compute receiver 
operating characteristics (ROC) for each of the tests.  The ROC is a way of comparing 
the tradeoff between Type I error (predicting damage when damage is not present) 
and Type II error (predicting no damage when damage is present) [3].  Type I error is 
also known as false alarm, whereas Type II error is known as missed detection.  When 
classifying measurements as either damaged or undamaged, a decision threshold value 
must be selected, above which the system classifies readings as damaged.  For any 
group of feature values which are not completely separable (the vast majority of real 
applications), there will arise some rate of Type I and Type II error depending on the 
threshold selected.  As part of selecting the optimal SHM system design, the BED 
algorithm will choose the threshold value which provides the optimal tradeoff for the 
parameters considered. 
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BAYESIAN EXPERIMENTAL DESIGN THEORY 
 
In order to design an SHM system optimally for a particular situation, the 

Bayesian experimental design (BED) technique is exploited [4, 5].  The criterion for 
designing the best SHM system from the standpoint of Bayes cost may be expressed 
as: 
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,

min C , P | , P Ci j i j je
i j

d d e e  
 

 
 
  

 
The symbol e refers to the “experiment”, or in this case the SHM system.  This 

notation may take into account a wide variety of design parameters, including the 
type, number, and location of sensors, the data acquisition used, and elements of the 
feature extraction process (such as the decision threshold).  The sum is over all 
possible decisions id  taken in response to the data gathered and all possible states of 

the structure, j . The term  dC ,i jd   is therefore the cost of making a decision given 

the true state of the structure.  The likelihood function  P | ,i jd e  is the probability 

that the system will make decision id  given the actual state of the structure j  and the 

SHM system used to assess that true state (e).  This probability is estimated from the 
probability of detection and the probability of false alarm from the tests conducted 
(data-driven) or from validated models (model-driven). Finally, the term  P j  is the 

prior probability of each state occurring, and  eC e  is the cost of implementing the 

SHM system. 
 

System Definition 
 
The first step to applying the BED approach to a problem is to identify the target 

states of the structure to be assessed [6].  In this case, the structure is considered to be 
in an undamaged state, to have sustained bolt loosening damage, or to have sustained 
mid-element magnet damage.  Next, the possible actions that may be taken in 
response to information on the structure’s state must be determined.  In this case, we 
will simply consider that when the SHM system detects damage, we shall inspect and 
repair, whereas we shall do nothing if it is undamaged.  The likelihood function is 
estimated from the test data – that is, the probabilities for a given system design and 
damage state are found from the percentage of the test cases that are classified in each 
damage category.  Finally, the prior probabilities that each damage state will occur 
must be determined.  Again, because this is a lab structure with no intrinsic prior 
history of failure, loading, etc., the prior probabilities were taken to be equal for bolt 
and magnet damage modes.  

 
BAYESIAN EXPERIMENTAL DESIGN RESULTS 

 
If all of the constraints of a problem are known, the BED procedure can be used to 

optimize the SHM system in a number of different ways.  For example, the optimal 
number of sensors can be determined based on the cost per sensor and the various 
decision costs.  Figure 2 depicts the lowest (normalized) system cost for each number 
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of sensors from two to sixteen.  Each plot represents different decision cost ratios 
relative to the sensor cost. 

 

 
Figure 2. Normalized system cost vs. number of sensors used. 

 

 
Figure 3. Sensor locations for different missed detection costs. Fixed false alarm cost = 1. 
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By contrast, if for weight, space, or other constraints the system is limited to a 
certain number of sensors, the BED procedure can localize them based on the relative 
costs of false alarm and missed detection for each type of damage.  Figure 3 shows 
examples from the bolted frame structure when constrained to have only four sensors.  
Four sensors is extremely sparse for the size of the structure being monitored, which 
serves to highlight the trade-off as the ratio between false alarm cost and missed 
detection cost changes.  When the missed detection cost is relatively low, as in the 
top-left figure, the system resorts to the most conservative arrangement possible.  That 
is, the sensors tend to cluster in smaller regions, achieving very accurate local 
prediction by sacrificing coverage area in order to minimize false alarms.  By contrast, 
when the missed detection cost is relatively high, as in the bottom-right figure, the 
sensors tend to spread out to maximize coverage and minimize the areas where 
damage might escape detection. 

The trade-offs can become even more explicit by looking at the receiver operating 
characteristics directly.  Figure 4 presents results considering only the magnet damage 
case with exactly four sensors on the structure.  Each line on the plot represents the 
ROC of the sensor arrangement that was found to be optimal for each missed 
detection cost value, with the cost of false alarm held constant at 1.  The square 
markers indicate the point on those ROC curves that provided the optimal 
performance.  As the missed detection cost increases, the system becomes more 
biased towards solutions that have a better detection rate as well as the accompanying 
higher false alarm rate.  This is manifested graphically in that the square markers 
continue to move up and right.  Furthermore, it is clear that the markers in this case 
are always closest to the top left in their particular region—that is, the BED algorithm 
is selecting sensor arrangements that are locally optimal (in terms of the ROC) for the 
false alarm to missed detection ratio specified.  Similar results may be observed in 
Figure 5 for the bolt damage case, although due to superior detectability of that damage 
type, there is not as much variability in the different solutions.  

 

 
Figure 4. ROC plots for four sensor arrangements, magnet damage only.  Squares indicate the optimal 
points selected by the BED algorithm. 
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Figure 5. ROC plots for four sensor arrangements, bolt damage only.  Squares indicate the optimal 
points selected by the BED algorithm. 

 
However, because the two forms of damage are simultaneously possible in the 

structure, it is more realistic to look at the sensor arrangements which minimize the 
combined cost for both forms of damage.  The resulting ROC plots are shown in Figure 
6.  It is clear from the right-hand plot that the chosen points on the ROC curve are no 
longer optimal for each case independently.  Instead, because detecting the each form 
of damage requires a different strategy, the optimal solution consists of a compromise. 

 

 
 
Figure 6. ROC plots for four sensor arrangements.  Squares indicate the optimal points selected by the 
BED algorithm. 
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CONCLUSIONS 
 
BED provides a useful tool for balancing the various trade-offs that arise in the 

design of an SHM system.  Through a case study applied to UGWSHM in a bolted 
frame, the principles of system selection through the BED process have been 
demonstrated.  First, the BED process was used to determine the optimal number of 
sensors to use for the SHM system based on the costs of the sensors and the costs of 
incorrectly assessing the damage.  In general, more sensors are used when the decision 
costs increase relative to the sensor cost.  Next, it was assumed that the sensor system 
is limited to four sensors, and the optimal arrangements of those sensors based on the 
costs of Type I and Type II error were plotted.  By visual inspection, it is clear that the 
system prefers smaller clusters of sensors when Type I error cost is high, as opposed 
to maximizing coverage when Type II error cost is high.  Through ROC analysis, we 
have shown that the system selects the optimal point on the ROC curve based on the 
cost ratios and the types of damage considered. 
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