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ABSTRACT 

 

This paper presents the initial developments of a hybrid model for estimating 

a rotorcraft’s Gross Weight (GW) and Center of Gravity (CG) which combines 

different models for different flight regimes in order to increase the accuracy of the 

estimates. The model will combine flight dynamics based models with data-driven 

models using a Kalman Filter (KF) – Neural Network (NN) framework.  

A GW model based on the main rotor thrust during steady state motion is 

described. The operating condition of the rotor is determined by force and moment 

equilibrium of the entire helicopter, therefore the thrust values calculated from trim 

conditions can be used to estimate GW. A second model, described here and which 

will be incorporated in the hybrid approach, is based on NN. Data recorded by the 

Health and Usage Monitoring Systems (HUMS) onboard CH-53E rotorcraft is used 

in order to estimate GW at the first hover. Future developments are presented at the 

end of the paper.  

 

INTRODUCTION 

 

An accurate assessment of gross weight (GW) and center of gravity (CG) is 

critical for the determination of rotorcraft fatigue and life estimates since GW/CG 

affect static and dynamic characteristics of helicopters. Therefore GW and CG are 

valuable information in calculating reliable loads and remaining fatigue life. These in 

turn assist the condition based maintenance systems used to enhance safety and reduce 

the operating cost of helicopters. To capture GW/CG changes continuously 

throughout the flight, advanced methods are required as conventional methods are not 

sufficient and prone to errors.  

This paper presents the initial developments of a hybrid model that will 

combine two knowledge sources: expert (physics-based, deterministic) and 

learning from examples (data-driven, stochastic). This hybrid model is needed to 

overcome the shortcomings and to take advantage of the strengths of two models 

presented in the literature: one is based on Neural Network (NN) [1-4] and the 
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second one is based on Kalman Filter (KF) [5]. A KF approach provides accurate 

state estimation in the presence of noisy, biased or missing measurements due to 

fusion between the sensor data and physical system model [5]. At the same time KF 

is based on an analytical model which represents an idealization of  rotorcraft 

dynamics, and total forces and moments need to be known in order to solve the 

differential system; consequently the influence of modeling error can be large. On 

the other hand, the NN-based approach is simple and straightforward and it has the 

freedom to identify and quantify the most significant parameters for prediction [1]. 

NN structure provides a multitude of efficient training algorithms for computing 

the parameters so as to best fit the training set. However, the accuracy the estimate 

depends on the availability and accuracy of the data and the network needs rigorous 

training, which is a time-consuming and laborious process. Furthermore, in order to 

include the rotorcrafts' degradation of performance over time, the NN needs to be 

retrained with large sets of data. 

Therefore this paper investigates algorithms with the final goal of building a new 

model which will estimate GW/CG with a 1% - 2% accuracy. Since it is expected that 

different analytical models to be applied to different flight regimes, future work will 

combine all these modules in a compact application.  

This paper is structured as follows: after this short introduction, two models used 

to calculate the helicopters’ GW are presented: one is based on rotor thrust and one is 

based on NN. In the end an innovative, hybrid approach that combines NN and KF 

techniques is detailed and future work is given. 

 

MODELS FOR GROSS WEIGHT ESTIMATION 

 

Gross Weight Estimation Using Main Rotor Thrust 

 

The operating condition of the rotor is determined by force and moment 

equilibrium of the entire helicopter. Consider force equilibrium for the helicopter in 

steady flight characterized by: rotor trust  and rotor drag  (which are defined 

relative to the referenced plane used),  helicopter drag  (assumed in opposite 

direction to the free stream), velocity  and vertical weight  [6]. Referring to Figure 

1, and resolving forces in the vertical direction:  

 

           (1) 

 

where  is the angle between the vertical and shaft, positive nose up,  is the 

amplitude of the longitudinal cyclic pitch and  is the angle of climb. Since  and  

are small angles, the above equation can be simplified to:  

 

  (2) 

 

which shows that the main thrust produced by the main rotor blades is used to 

balance the weight and to provide forward propulsive force which acts against 

aerodynamic drag. Given that  is much smaller than , it is finally obtained:  

 

  (3) 
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Therefore, as a first approximation, determination of rotor thrust can provide a 

very good estimate of weight. 

 

 
Figure 1. Longitudinal forces and moments of a generic helicopter [6]. 

 

In order to show how this approach can be used, two examples are shown here. 

The first one is using simulated data whereas the second one is using realistic data 

from a H-60 aircraft. For the first case, typical UH-60 helicopter data gathered from 

various sources [7, 8] is used as input in a flight dynamics software RotorLib FDM 

[9]. The trim conditions are determined at different airspeeds for a given rotorcraft 

mass of 6000 kg and the resulting thrust values are shown in Figure 2(a). It can be 

seen that the calculated thrust values are very close to the actual rotorcraft weight for 

all the chosen airspeeds (the maximum percentage error is 1.46). The calculations are 

repeated for a rotorcraft mass of 8000 kg and the results are shown in Figure 2(b). In 

this case the maximum percentage error is 1.12%. 

 

                                                                      
                                              (a)                                                                                        (b) 

Figure  2. Comparison of computed thrust and given weight values for various speeds: (a) for a given 

rotorcraft mass of 6000 kg (the maximum percentage error is 1.46%); (b) for a given rotorcraft mass of 

8000 kg (the maximum percentage error is 1.12%). 

 

In the second example, the pilot inputs such as longitudinal and lateral cyclic 

position, collective position and pedal position are obtained from the Health and 

Usage Monitoring Systems (HUMS) installed on a UH-60R aircraft and they are used 

as inputs in the RotorLib flight dynamics software [9] where subsequently the main 
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rotor thrust is calculated. The relevant input values are: collective 21.73%, cyclic 

lateral 24.18%, cyclic longitudinal 10.048%, pedal 48% and ground speed 59.42 

m/sec. The rotor blade properties used are characteristics of the UH-60R aircraft: 

radius 8.17 m, chord 0.5334 m, lift curve slope 0.11, zero lift drag coefficient 0.007, 

twist -18 and number of blades 4. In the calculation of rotor thrust, the rotor RPM is a 

crucial parameter which is not precisely known, hence the thrust is calculated at 

different RPMs as shown in Table 1. 

The HUMS box also has information about the rotorcraft weight which is derived 

from initial configuration and fuel burn rate. For these cases the weight at the flight 

configuration is shown in fourth column of the table. The rotor thrust as shown in 

Table 1 is comparable to the weight calculated from fuel burn rate with an error 

smaller than 1 %. 

 
Table 1. Rotor thrust determined at different RPM. 

RPM 
Computed 

thrust (N) 

Computed 

thrust (kg force) 

Given mass 

(kg) 
% Error 

240 80331.1 8191.5 8197 0.0671 

270 93774.6 9562.4 9568.8 0.0669 

300 107727.1 10985.2 10992.5 0.0665 

   

Future work will incorporate this model in a hybrid model as explained in the last 

Section of the paper.  

 

Gross Weight Estimation Using a Neural Network Model 

 

This section presents a model to compute rotorcraft GW using Neural Network 

(NN) and data recorded by the Health and Usage Monitoring Systems (HUMS) 

onboard CH-53E rotorcraft. A NN-based model which uses as input several HUMS 

parameters is used to estimate initial/take-off GW. In order to train and validate the 

model, the take-off weight as recorded in the pilot's log is used. It is believed that the 

pilot's log is more accurate that the GW provided by the HUMS. 

Neural Network (NN) is among the relatively straightforward methods proposed 

for GW and CG estimation [1-4]. The same steps are applied in all cases, the 

differences being the aircraft considered (SH-60B in [1], V-22 for in [2, 3]), the 

source of input parameters (real flight data in [1, 2], simulated flight data in [3]), the 

NN architecture and type (radial basis or back-propagation) and the selection of the 

input parameters (4 parameters in [1] and 13 parameters in [2, 3]). One of the 

advantages of this method is the freedom to identify and quantify the most significant 

parameters for prediction. Reference [1] considers only 4 HUMS recorded data: 

engine torque, longitudinal stick position, altitude and collective stick position 

whereas [2, 3] consider 13 HUMS recorded data: left rotor torque, right rotor torque, 

left rotor longitudinal cyclic control, right rotor longitudinal cyclic control, left rotor 

lateral cyclic control, right rotor lateral cyclic control, nacelle angle, pedal position, 

pitch attitude, roll attitude, radar altitude, density altitude and normal load factor. In all 

the cases, the results of the NN approach are validated by comparison with the 

measurements and the error is relatively small. 

As explaind in the last Section of the paper, the distinct aspect of our development 

is the fact this model will be just a part of the global hybrid model. The data obtained 

from NN will represent pseudo-measurements for the Kalman Filter model.  
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CH-53E HUMS data 

 

Data collected from 108 flights obtained from 9 CH-53E aircraft conducting 

regular operations was utilized for model development in hover. Two sets of data 

were available: (a) initial pilots' logs and (b) HUMS box data. Using a regime 

recognition algorithm developed previously by our team and detailed in reference 

[10], the HUMS data was separated into distinct flight regimes. From HUMS data, 

values at four instants were extracted and used:  rotor start (RS), first take-off (TO), 

first hover and (4) landing. A further investigation was conducted in order to better 

understand the data and a few details are described here. 

Figure 3 presents aircraft GW measured in lb provided by the HUMS and 

estimated by the pilot at the beginning of the flight. The figure shows four sets of data 

for each flight: (1) data recorded by the HUMS at rotor start, (2) data recorded by the 

HUMS at first hover, (3) initial data as given in the pilot's log and (4) GW computed 

as the sum of empty weight, crew (from pilot's log) and fuel estimated by the HUMS. 

Figure 3(b) shows the absolute error between the pilot's log and the HUMS data at 

rotor start: the average error is 8.5%. 

 

  
Figure  3. (a) Aircraft Gross Weight (lb) provided by: (1) HUMS at rotor start, (2) HUMS at first hover, 

(3) pilot at the beginning of the flight, (4) sum of empty weight, crew (from pilot's log) and fuel from 

HUMS; (b) Absolute error the average error is 8.5%. 

       

Results 

 

  In order to illustrate the NN approach, this section presents two examples. The 

CH-53E HUMS data at first hover is used and a feed-forward, back-propagation NN 

is built to train and test the data. The true and predicted values of the GW are 

compared in order to evaluate the model capabilities. A feed-forward, back-

propagation NN which has five parameters in the input layer (altitude rate, average 

torque, engine 1 torque,   and  components of air velocity) is used. Three hidden 

layers, with ten, six and three neurons are used while the output layer consists of only 

one neuron which defines the GW. Among 98 total data points, 78 were used for 

training and 20 for validating. The NN weights associated with each link between two 

nodes are also shown; the thicknesses of the links are proportional to their magnitudes 

with negative weights shown in red and positive ones shown in green. A software 

called Easy NN-plus  [11] is used to train and test the data. 
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The true and predicted values of GW are compared in Figure 4 in order to 

evaluate the model capabilities: Figure 4(a) presents a comparison for the training set 

and shows that the average training error is below 0.2% whereas the maximum 

training error is approximately 1.2%. Figure 4(b) displays a comparison for the 

validation set and shows an average error of 2.4% and a maximum error of 9%. 

 

      
                                                (a)                                                                                         (b) 

Figure  4. True values vs. predicted values: (a) training set (the average error is below 0.2%); (b) 

validating set (the average error is below 2.5%). Among 98 total data points, 78 were used for training 

and 20 for validating. 

 

 The second example shows that these errors decrease if the number of inputs in 

the NN increases. In this case among the 12 input nodes considered, five are from the 

previous case while the rest are the four components of the input vector (collective 

stick position, lateral cyclic position, longitudinal cyclic position, pedal position) and 

the three components of the Euler's angle vector (heading, pitch, roll attitude).  In this 

case only 83 data points were available because of missing or erronous flight 

parameters. Among the 83 total data points, 71 were used for training and 12 for 

validating. The true and predicted values of GW for both the training and validating 

sets are presented in Figure 5: Figure 5(a) presents a comparison for the training set 

and shows that the average training error is around 0.004% whereas the maximum 

training error is approximately 0.027%. Figure 5(b) displays a comparison for the 

validation set and shows an average error of 1.8% whereas the maximum error is 

approximately 6.5%. 
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(a)                                                                             (b) 

Figure 5. True values vs. predicted values: (a) training set (the average error is around 0.004%); (b) 

validating set (the average error is around 1.8%). 

   

Several improvements will be considered in future work: (a) a sensitivity analysis 

will be conducted to investigate the most influential HUMS variables, (b) different 

network architectures will be tested to check any error reductions and (c) algorithms 

for data cleaning and smoothing will be investigated. 
 

Gross Weight Estimation Using a Hybrid Approach 
 

As the GW/CG estimation problem is based on both the accuracy of data and the 

fidelity of flight dynamics theory, a hybrid model that combines data and analytical 

models such that to reduce both sources of errors will be developed. This framework 

represents the main engine of the future model and will provide innovative ways to 

solve rotorcraft problems in the real flight dynamic domain. Therefore, the final 

objective of this work is the development of an advanced, hybrid model that will have 

the following advantages:   
 

 Fuses the powerful estimation capabilities of the KF scheme with the strong 

learning capabilities of the NN in order to improve accuracy within the 

required 2%, give prediction for different regimes and be self-corrective;  

 Provides innovative ways to solve rotorcraft problems in the real flight 

dynamic domain; Among these complex problems, parameter identification 

and regime recognition can be easily implemented.  
 

Figure 6 shows an approach where KF is the main process whereas NN provides 

pseudo measurements for KF. In the pure Kalman filter based GW estimation 

technique, weight which is an unknown parameter in the dynamical equations, is 

treated as an additional state parameter, which has to be estimated. Flight data (e.g. 

engine torque, altitude, airspeed, yaw rate, sideslip, pitch and roll attitude, etc.) will be  

used in a NN in order to compute the GW for a helicopter which will be treated as 

measurement data in KF. KF is a model which cannot stand by itself but it needs an 

analytical model which describes a dynamical system. As shown in Figure 6, several 

combinations of these models will be tested.  
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  Figure  6. Multiple sources of GW and CG data combined with a KF and NN. 

 

REFERENCES 

 

1.  M. Morales and D. Haas.  Feasibility of Aircraft Gross Weight Estimation Using 

Artificial Neural Networks. pages 1872-1880, 2001. American Helicopter Society 

57th Annual Forum.  

2.  N.B. Bi and D.J. Haas and K. McCool.  Investigation of In-Flight Gross Weight 

and CG Estimation for the V-22 Aircraft. June 7 - 10, 2004. American Helicopter 

Society 60th Annual Forum.  

3.  N.B. Bi and D.J. Haas and K. McCool.  Numerical Study on the Robustness of a 

Neural Network Model for Gross Weight Estimation of Tiltrotor Aircraft. 15-18 

August 2005, San Francisco, California. AIAA Modeling and Simulation 

Technologies Conference and Exhibit.  

4.  M. Idan and G. Iosilevskii and S. Nazarov.  In-Flight Weight and Balance 

Identification Using Neural Networks.  Journal of Aircraft, 41(1):137–143, 2004.  

5.  M. Abraham and M. Costello.  In-Flight Estimation of Helicopter Gross Weight 

and Mass Center Location.  Journal of Aircraft, 46(3):1042-1049, 2009.  

6.  A. R. S. Bramwell, G. Done, D. Balmford,  Bramwell’s Helicopter Dynamics, 

Butterworth-Heinemann, Second edition, 2001 

7.  K.B. Hilbert.   A Mathematical Model of the UH-60 Helicopter. NASA TM-85890, 

1984.  

8.  G.D. Padfield.   Helicopter Dynamics and Flight Control. Blackwell Science Ltd., 

1996.  

9.   RotorLib FDM for MATLAB® User's Guide 3.1.2. RTDynamics, Copyright  

2010.  

10.  S. Sarkar and G. Barndt and C. Miller.  Maneuver Regime Recognition 

Development and Verification For H-60 Structural Monitoring. Virginia Beach, VA. 

May 1-3, 2006. American Helicopter Society 63rd Annual Forum.  
11.   EasyNN-plus help, the user interface manual. Neural Planner Software Ltd. 

Copyright  2002 - 2010.  

HUMS 

and/or 

sensors 

… Flight 

Dynamics 

Model 

Artificial 

Neural 

Network 

Kalman 

Filter 

GW 

GW, CG 

Final GW, CG 

Force 

Equilibrium 

Model 

State 

State 

GW 

Fuel Burn 

Rate 

Model 

GW 

8




