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ABSTRACT 

 
A highly available infrastructure is a premise for capable railway operation of high 

quality. Therefore maintenance is necessary to keep railway infrastructure elements 
available. Especially switches are critical because they connect different tracks and 
allow a train to change its moving direction without stopping. Their inspection, 
maintenance and repair have been identified as a cost. 

The Institute of Transportation Systems in cooperation with the German Railways 
(DB AG) is exploring ways to apply a diagnostic and prognostic health management 
by monitoring the condition of switches and their degeneration process to reduce 
failures and thus maintenance costs. Due to the fact that switches are exposed to 
strong forces and sometimes extreme weather conditions, any sensor applied in the 
field has to be very reliable and robust. But such sensors are expensive. There are only 
a few monitoring systems on the market that fulfil these requirements, but none of 
them provides a satisfying accuracy in terms of failure diagnosis.  

This contribution compares the failures indicated by the system with the actual 
failures that have occurred using ROC graphs as a measurement. These inaccuracies 
result from several external parameters influencing the switch condition, hence 
producing noise in the measurement. These parameters and how they are measured 
without additional sensors are explained. It is shown how external data sources are 
integrated and used to reduce the noise. This involves a combination of data mining 
methods like K-Modes clustering and artificial Neural Networks. The resulting 
improvement of the diagnostic accuracy is then expressed using false positive and true 
positive rate as a primary measure. 
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INTRODUCTION 
 
A highly available infrastructure is a premise for capable railway operation of high 

quality. Therefore maintenance is necessary to keep railway infrastructure elements 
available. Especially switches are critical because they connect different tracks and 
allow a train to change its moving direction without stopping. Besides, switches are 
responsible for 19% of all minutes of delay in the network of German Railways (DB 
AG) [1]. In 2010 the DB AG registered 147.5 million minutes of delay [2]. Thus 
28.025 million minutes respectively 53.32 years of delay are caused by faults or 
failure of switches. This makes switches crucial for the quality of operation and the 
attractiveness of rail transport. But their inspection, maintenance and repair have been 
identified as a cost driver for infrastructure managers.  

The Institute of Transportation Systems in cooperation with the DB AG is 
exploring ways to apply a diagnostic and prognostic health management by 
monitoring the condition of switches and their degeneration process to reduce failures 
and maintenance costs. Due to the fact that switches are exposed to strong forces and 
sometimes extreme weather conditions, any sensor applied in the field has to be very 
reliable and robust. But such sensors are expensive. The investment for equipping all 
of the 71674 switches and crossings would far exceed the available budget.  

Additionally the railway operator has to prove a reactionless functionality to 
ensure that no safety issues arise from the monitoring and the corresponding data 
transmission (e.g. accidently repositioning of the switch leading to derailment or 
crash). There are only a few monitoring systems on the market that fulfil these 
requirements. Field experience has shown that none of them provides a satisfying 
accuracy in terms of failure diagnosis [3].  

The research goal of the Institute of Transportation Systems is to reduce delays for 
rail passengers and the maintenance costs for the infrastructure by improving the 
switch condition diagnosis and prediction. Therefore this contribution compares the 
failures indicated by a diagnostic system with the actual failures that have occurred 
using ROC graphs as a measurement. These inaccuracies result from several external 
parameters influencing the switch condition, hence producing noise in the 
measurement. These parameters and how they are measured without additional 
sensors are explained in the following. It is also shown how external data sources are 
integrated and used to reduce the noise. The resulting improvement of the diagnostic 
accuracy is then expressed using the false positive and the true positive rate as a 
primary measure. 

 
SWITCH DIAGNOSIS SYSTEM AS FUNDAMENTAL CONDITION 
SENSOR 

 
The switch engine (also referred to as point machine) moves the switch tongues 

(also referred to as blades), which make contact with one or another rail and thus 
enabling a passing train to take one or the other direction. Switch diagnosis systems 
have been invented to monitor the function of the switch engine respectively the 
switch by monitoring the electrical power consumption during tongue repositioning.  

From the few systems available on the market in Europe, e.g. Roadmaster 2000 
from VAE, POSS from Strukton, and SIDIS W from Siemens, this research is based 
on the latter. SIDIS W only uses the switch motor as “sensor”. Relevant data, like 
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voltage, amperage, and effective power, are directly measured at the engine and then 
processed in a remote diagnostic component. During the repositioning of tongues the 
power timeline graph shows a typical development (see Figure 1 left side). Based on 
that idealistic, general pattern each individual switch is recorded with its characteristic 
level of power at the installation. Also four threshold values are defined. A yellow and 
a red alert, each for an upper and a lower boundary, are set (see Figure 1 right side). In 
case the measured values fall below or exceed their thresholds respectively, first a 
yellow alert is given. If the measured values decrease or increase further respectively, 
a red alert is given. SIDIS W presents eight indicators, each displaying the condition 
state during a different phase or of a different parameter. Should the measured power 
level during operation, respectively the corresponding indicator flag, reach the yellow 
or even the red alert, a failure might occur or might have occurred. At this time at the 
latest the responsible operation staff should maintain or at least inspect the 
corresponding switch. Theoretically, SIDIS W is able to detect tongue deformation, 
exceptional slackness of the locking, engine failures, and hardly moving tongues 
caused by a bad switch condition [4]. 

 
 

Figure 1. Pattern of effective power during repositioning of tongues within SIDIS W [4]. 
 

ACCURACY OF THE ORIGINAL DIAGNOSIS 
 
The question is how accurate is SIDIS W detecting failures? The yellow or even 

the red alerts are supposed to indicate a failure at the switch. Hence the maintenance 
staff should react to an alert to avoid any disturbance in the railway operation. On the 
one hand this would eventually reduce the down time of switches and the delays. On 
the other hand every inspection or repair needs budget spending and requires the time 
of the maintenance staff. Therefore a balance between detecting failures and avoiding 
false alerts has to be found, as with every other diagnosis system.  

One way to look at the accuracy is to simply count the number of measures taken 
during a given time period. Then the number of alerts and the number of actual 
failures of a switch is determined. Table 1 shows the results. For the 11 switches in the 
table, which are all at the same railway station, this simple counting gives the 
impression that most of the time an alert can be ignored because only a few of the 
many alerts are accompanied by a recorded failure.  
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Table 1. Switches and the results from the diagnosis system during a given time period. 
 

Switch Period [d] Measures Yellow Alerts 
(no Red)

% of Measures Red Alerts % of Measures Failures

1 712 2429 819 33,72% 12 0,49% 2
2 712 1376 576 41,86% 124 9,01% 1
3 713 754 393 52,12% 20 2,65% 0
4 596 760 45 5,92% 9 1,18% 0
5 126 10992 7523 68,44% 2510 22,83% 4
6 323 31229 4134 13,24% 358 1,15% 13
7 322 10911 1889 17,31% 757 6,94% 11
8 126 432 134 31,02% 24 5,56% 0
9 713 2224 485 21,81% 220 9,89% 1

10 709 2059 930 45,17% 681 33,07% 0
11 709 1800 69 3,83% 9 0,50% 0  

 
Although the analysis of the measurement data showed that SIDIS W is able to 

reveal the degradation of the switch over months [5], alerts seem to occur randomly in 
smaller periods of weeks or days. Former research showed that the effective power 
consumption of the engine is influenced by various parameters. They cause a 
fluctuation in the level of power consumption, which every now and then strikes the 
thresholds for alerts without an abnormal behaviour and hence gives false alerts [6]. 
Beside the constructional characteristics of the switch the climate and especially the 
temperature has been identified as the main influence on the measures. Table 2 shows 
the average correlation between some of the measured attributes of SIDIS W and 
some climate parameters. The temperature has a high correlation to the power 
consumption during the idle engine at the beginning (Phase 1) and the maximum 
power at the end of the repositioning (P Maximum). The last row of the table gives 
the standard deviation of the correlation to the temperature. It shows how wide the 
range can be, meaning that the influence of the temperature on some switches is 
bigger than on others, depending on the constructional characteristics of the switch.  

 
Table 2. Average power and climate correlation matrix of 29 switches. 

 
1 Phase 2 Phase 4 Phase 6 Phase Time of P MaximEngine VPeak of HumidityTemperaAtmosphPrecipita

1 Phase 1,00 0,24 0,31 0,16 0,06 -0,47 0,35 0,16 -0,42 0,60 -0,01 0,01
2 Phase 0,24 1,00 0,57 0,51 0,32 0,18 0,27 0,42 -0,03 -0,14 0,07 -0,02
4 Phase 0,31 0,57 1,00 0,53 0,23 0,00 0,33 0,57 -0,09 0,05 0,02 -0,01
6 Phase 0,16 0,51 0,53 1,00 0,40 0,13 0,18 0,71 -0,06 -0,06 0,07 -0,03
Time of Repositioning 0,06 0,32 0,23 0,40 1,00 0,05 -0,01 0,31 -0,05 -0,07 0,01 -0,01
P Maximum -0,47 0,18 0,00 0,13 0,05 1,00 0,02 0,06 0,43 -0,77 0,09 -0,01
Engine Voltage 0,35 0,27 0,33 0,18 -0,01 0,02 1,00 0,16 0,03 0,01 -0,01 0,01
Peak of 5 Phase 0,16 0,42 0,57 0,71 0,31 0,06 0,16 1,00 -0,06 -0,02 0,04 -0,02
Humidity -0,42 -0,03 -0,09 -0,06 -0,05 0,43 0,03 -0,06 1,00 -0,50 -0,12 0,08
Temperature 0,60 -0,14 0,05 -0,06 -0,07 -0,77 0,01 -0,02 -0,50 1,00 -0,11 0,03
Atmospheric Pressure -0,01 0,07 0,02 0,07 0,01 0,09 -0,01 0,04 -0,12 -0,11 1,00 -0,08
Precipitation 0,01 -0,02 -0,01 -0,03 -0,01 -0,01 0,01 -0,02 0,08 0,03 -0,08 1,00

Std. Deviation to Temp. 0,36 0,36 0,31 0,35 0,39 0,29 0,15 0,30 0,21 0,00 0,09 0,03  
 

The conclusion drawn from the influence of the temperature on the measured 
attributes or on the alerts respectively is to exclude this noise to reduce the false alerts. 
Beforehand, the temperature has to be known. One way to receive the information 
would be to install a temperature sensor at every switch. But such sensors must 
withstand the rough conditions in the field, like strong forces and dirt. They also 
should be reliable in order not to become a source of failure themselves. Such sensors 
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would be expensive. Therefore, it is the aim to get the temperature data without the 
installation of new sensors.  

 
INTEGRATION OF EXTERNAL DATA SOURCES TO REDUCE THE 
NOISE IN THE DIAGNOSIS 

 
As presented in [6] the temperature data needed for the integration in the diagnosis 

can be retrieved from an external source. Weather stations in the proximity of the 
switches provide the information openly. With the help of climate data from a weather 
station less than ten kilometers away, data adjustment of the original measures from 
the diagnosis system can be reached by the following steps: 

 
Clustering Switches According to their Constructional Characteristics 

 
First, a clustering approach is used. With the K-Modes-algorithm introduced by 

[7] the switches are grouped to treat those equally which have the same constructional 
characteristics, e.g. the switch type, the curve radius, the sleepers, etc.  

 
Learning the Alert Thresholds with an Artificial Neural Network (aNN) 

 
Secondly, an artificial Neural Network (aNN) is used to learn the thresholds of the 

measured attributes at which the yellow and red alerts are given. This is done 
individually for each switch in each cluster. Since only five out of eight indicators are 
influenced by the temperature, only their corresponding thresholds are learned. This 
step is necessary because neither the exact figure of the thresholds was known nor the 
precise calculation in relevance to the depending attributes. For example, the indicator 
for failures of the switch tongue lock at the end of the repositioning depends on 
several measured attributes. The measured power level during tongue locking (Phase 
6) is set in relation to the power level during the movement of both tongues (Phase 4) 
and the maximum power. So the corresponding alerts are the result of an equation 
taking into account these tree attributes with unknown factors. In this experiment the 
learning algorithm introduced by [8] was used. No aNN predicted the alerts with 
accuracy less than 99.6%. However, this step is redundant in case the thresholds are 
known precisely. 

 
Adjusting the Original Diagnosis Measures 

 
Third, the original measured values are adjusted to the temperature. For each 

switch in each cluster the correlation between diagnosis attributes and temperature are 
calculated. Whenever the correlation is below -0.6 or above 0.6 its coefficient of 
determination is calculated. The coefficient of determination can be interpreted as a 
metric of how much the change in one value can be explained with the change of 
another. Additionally, the average change of an attribute per °C is calculated and then 
multiplied by the coefficient of determination. The result is a correction value per °C 
for each relevant measured attribute of each switch. This correction value is applied to 
the measures while the temperature is set to its overall average during the time period, 
in this case 11.3 °C. This way the measures of the diagnosis system are smoothed and 
the fluctuations caused by the temperature are reduced.  
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Resetting the Alerts of the Diagnosis System 

 
As fourth and last step, the trained aNN is fed with the adjusted measures. The 

result contains diagnosis measures of each switch, but with the red and yellow alerts 
for five of the eight indicators reset.  

 
IMPROVED ACCURACY OF THE TEMPERATURE ADJUSTED 
DIAGNOSIS 

 
Once the indicators are reset with the integration of external data source (the 

temperature retrieved from a weather station) it has to be evaluated if this really 
improved the accuracy. The simple numbers seem to indicate this. The yellow alerts 
are reduced to 14134 from 16997 (83.1%) while the red alerts have decreased to 386 
from 4724 (8.1%). Regarding the balance between detecting failures and avoiding 
false alerts, these numbers give little information about the performance of either the 
original diagnosis or the temperature adjusted diagnosis. A better way to look at the 
diagnostic performance of the system is a Receiver Operating Characteristics (ROC) 
graph. As introduced by [9], a ROC curve is a visualisation technique used to analyse 
classifiers according to their performance. It is a well established method to analyse 
diagnostic systems [10]. It is based on a confusion matrix which contains the 
predicted and the actual class. The metrics displayed in an ROC graph are calculated 
from the matrix. The false positive (also referred to as false alert rate) is the relation 
between wrongly predicted faults and all non-faults in a data set. The true positive rate 
is the relation between the correctly predicted faults and all faults. In the ROC graph 
the best predictor is the one closest to the left upper corner. There every fault is 
predicted while no false alert is given. Figure 2 shows the basic concept of ROC 
graphs. 
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Figure 2. Confusion matrix of predicted and actual class and basic ROC graph. 
 

Taking only the plain number of alerts and failures would provide only two single 
points for the systems. In order to compare the performance of the original diagnosis 
with the one after the integration of the external data more points are necessary. 
Therefore, the following metrics was used to determine a failure from the indicators 
and their alerts: 
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 Any of the indicators gave a red alert. 
 Any of the indicators gave a red or yellow alert. 
 All indicators gave a red alert. 
 All indicators gave a red or yellow alert. 
 Any indicator gave x consecutive red alerts, in which x is 5, 10, 20 or 50. 
 Any indicator gave x consecutive red or yellow alerts, in which x is 5, 10, 

20 or 50. 
 In y hours any indicator gave z percent red alerts, in which y is 48, 96 or 

144 and z is either 67%, 75%, 80% or 90%. 
 In y hours any indicator gave z percent red or yellow alerts, in which y is 

48, 96 or 144 and z is 67%, 75%, 80% or 90%. 
 
Due to the comprehensiveness, not all of the results are displayed in this paper. 

Only those which are significant for the comparison are provided in Table 3. It lists 
some metrics and their corresponding FP Rate und TP Rate, while Figure 3 shows a 
sample of the analysis in the ROC graph (note that the graph is pruned above 0.5 for 
space saving). In the ROC graph one line connects one pair of the original and 
adjusted diagnosis results for a given metric. The dot at the line represents the FP/TP 
rate of the original diagnosis system. The arrowhead represents the FP/TP rate of 
temperature adjusted diagnosis.  

 
Table 3. False and true positive rates from the original and the temperature adjusted diagnosis. 

 
Origninal Diagnosis Temperatrue Adjusted Diag
FP Rate TP Rate FP Rate TP Rate

1. 5 Consecutive Red Alerts before Failure 0,0107 0 0,0007 0
2. 67% Red Alerts in the 48 h before Failure 0,0015 0,0313 0 0
3. 80% Red or Yellow Alerts in the 48 h before Failure 0,0057 0,1563 0,0044 0,1250
4. 75% Red or Yellow Alerts in the 48 h before Failure 0,0058 0,1563 0,0046 0,1250
5. 67% Red or Yellow Alerts in the 48 h before Failure 0,0072 0,1563 0,0062 0,1250
6. 75% Red or Yellow Alerts in the 144 h before Failure 0,0225 0,1563 0,0127 0,0938
7. 67% Red or Yellow Alerts in the 144 h before Failure 0,0237 0,1563 0,0151 0,1563
8. Any Red Alert before Failiure 0,0727 0,1875 0,0059 0,0313
9. 10 Consecutive Red or Yellow Alerts before Failure 0,1279 0,1875 0,0756 0,1563
10. 5 Consecutive Red or Yellow Alerts before Failure 0,1641 0,1875 0,0923 0,1875
11. Any Alert before Failure 0,3343 0,5000 0,2234 0,4375

Metric
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Figure 3. ROC graph comparing the original diagnosis to the temperature adjusted diagnosis. 
 

In most cases the diagnosis adjusted to the temperature performs better. Anyhow, 
there are metrics at which the original diagnosis performs better, like any red alert 
before failure or a high percentage of alerts in a short period of time. The high number 
of alerts of the original diagnosis makes it more likely to alert before an actual failure. 
But those metrics were outperformed by others producing results in the upper left area 
of the graph. What Table 1 and Figure 3 do not show is that the integration of external 
temperature data did not detect any failure undetected before. Since most of the 
measured values of effective power have been reduced and most alerts came from 
exceeding the thresholds, only a very small number of new red alerts had been set. In 
general, the main improvement is the decrease of false alerts. Hence, this will make 
the diagnosis more reliable, even if not to a level at which the maintenance staff reacts 
on every hypothetical failure indicated by the diagnosis system. 

 
CONCLUSION AND FURTHER RESEARCH 

 
The research aims to reduce the delays caused by failures of railway switches and 

also to reduce maintenance costs. Therefore the focus is on finding ways to apply a 
diagnostic and prognostic health management by monitoring the condition of switches 
and their degeneration process. The basis is an existing diagnosis system. But its 
accuracy is not sufficient enough, mainly because of its high number of false alerts. 
Other parameters interfere with the diagnosis and produce noise responsible for false 
alerts. After quantifying the temperature as one parameter of significance, a way has 
been presented to adjust the measures of the original diagnosis. The temperature has 
been retrieved and integrated using a weather station as external data source, available 
at almost no additional costs. Hence the equipping of additional sensor is not 
necessary. The measures of the diagnosis system have been recalculated excluding the 
influence of the temperature and the alerts have been reset. Both, the original and the 
adjusted diagnosis have been compared according to their false positive and true 
positive rates. In regard to the ROC graph of both systems, the adjusted diagnosis has 
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shown some advantages compared to the original system. Though the adjusted 
diagnosis did not detect any new failures, the main improvement is the decrease of 
false alerts and thus the improvement of reliability. 

However, the results also show that the true positive rate needs to be improved. 
Therefore other parameters which influence the switch condition need to be quantified 
and included in the diagnosis. Additionally, the metrics by which a failure is indicated 
will be subject to further research. Thus the results at hand are only an early stage on 
the way to predict switch failures in the railway network.  
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