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ABSTRACT 
 

The vibration-based global damage detection methods try to extract modal 
parameters from vibration signals as the main structural features and then apply these 
features to perform damage diagnosis. For a beam structure, the vibration signals are 
usually lateral acceleration, velocity or displacement. As a result, the extracted mode 
shapes are “lateral displacement” mode shapes. In this study, the “rotatory 
displacement” mode shapes were extracted from the macro-strain vibration signals. 
These rotatory displacement mode shapes were employed to detect damage of a beam 
structure utilizing the local flexibility method. The proposed method was verified by 
numerical studies of a simply supported beam. The finite element model was 
constructed using the ANSYS software with solid elements. The exact mode shapes 
and natural frequencies of the intact and damaged cases were obtained from modal 
analysis of the finite element model. The effects of the number of modes, damage 
locations  and  noise  in  the  modal  parameters  on  damage  detection  results  were 
discussed in the numerical studies. The results illustrate potential feasibility of the 
proposed idea and the potential advantage of utilizing macro-strain mode shapes over 
the lateral displacement mode shapes in noisy conditions. However, further 
experimental research is necessary to verify the applicability of the proposed approach 
to real structures. 
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INTRODUCTION 
 
Due to the increasing demand of maintaining performance, reliability, and 

cost-effectiveness in civil, mechanical, and aerospace communities, the ability to 
promptly and accurately detect, localize, and quantify structural damage has become an 
important factor. The vibration-based technique which detects damage in a structure 
from changes in global dynamic properties is one of the promising fields in structural 
damage detection. Relating structural damage detection techniques have attracted 
much attention in recent years, and many approaches have been developed.  

Recently, Abdo and Hori (2002) demonstrated the usefulness of the rotation of 
mode shape as a more sensitive diagnostic parameter than the displacement mode 
shape for damage localization in flexural structures. However, the application of the 
rotation of mode shape is only theoretical and numerical. In addition, Li and Wu (2007) 
illustrated the feasibility of damage detection algorithms on the basis of dynamic 
macro-strain measurements from long-gauge FBG sensors. Because the rotary mode 
shapes can be obtained from the macro-strain mode shapes, the experimental 
application of the rotary mode shapes for damage detection seems possible. 

On the other hand, Toksoy and Aktan(1994) first tried to detect damage locations 
based on structural flexibility matrices of a beam structure. However, the damage 
detection algorithms based on flexibility matrices lack a solid theoretical background 
until the damage location vector method which can locate damage was developed by 
Bernal (2002). Reynders and De Roeck (2010) further developed the local flexibility 
method with a robust theoretical background to not only detect damage locations but 
also damage extents. The local flexibility method utilizes flexibility matrices of a beam 
structure before and after damage constructed by lateral displacement mode shapes. 
Combined with corresponding load configurations which cause strain and stress fields 
within a local region of the beam structure, the damage extent of the local region can be 
estimated. 

In this study, the idea to utilize macro-strain measurement via the local flexibility 
method to perform damage localization and quantification of a beam structure is 
proposed. Numerical studies considering practical issues including the limited number 
of structural modes and noise effect in the modal parameters were investigated. The 
numerical results was also compared to the one utilizing the local flexibility method 
based on lateral displacement mode shapes.  
 
 
METHODOLOGY 

 
The local flexibility method which not only localizes but also quantifies the 

damage of a structure has been developed by Reynders and De Roeck (2010). Consider 
a structure with volume  and boundary   which is subjected to the Dirichlet 
boundary conditions x x  along part of the boundary. A first load system 1f  is 
applied at a limited number of l  DOFs where response can be measured. The first load 
system is chosen such that the induced stress field 1σ : (1) can be calculated from the 
loading without knowledge of the structure’s stiffness and (2) consists of nonzero 
stresses in a small volume p  only. The stiffness within p  is assumed constant.  

Based on the virtual work principle: 

2



T T Td d dσ ε


       b x t x  (1) 

where 3 1b  is the vector with body forces, 6 1t  the vector with applied 
tractions, 6 1σ   the corresponding stress vector, 3 1 x  a virtual displacement 
field that obeys the Dirichlet boundary conditions and 6 1ε   the corresponding 
virtual strain vector. If the virtual displacement field is chosen as the one that is induced 
by the first load system 1f  and the forces and the stresses are due to the second load 
system 2f  which obeys the boundary condition of the system, one has that 
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where 1
jx  is the displacement at DOF j  corresponding to the first load system. 

This equation shows that 1x  is only dependent on the stress-strain relationship inside 
p . Assume that the structure is linear elastic and that 1σ  is proportional to 1ε  with 
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where K  is the change in the stiffness parameter in p  due to damage. It is 
assumed that K  is constant within p . 

Consider a beam structure under the load configuration 1f  as shown in Figure 1. 
Other than the lateral force, the momental force is applied to the beam. If shear 
deformation can be neglected and EI is constant between equidistant points 1j   and 

2j  , the force configuration of Figure 1 causes nonzero stresses between points 1j   
and 2j   only, whatever the beam is isostatic or hyperstatic. This can be proved if 

(1) The vector sum of all forces of Figure 1 is zero; 
(2)  The resulting moment of all forces of Figure 1 at points 1j   and 2j   is 

zero. 
(3) The relative rotation between points 1j   and 2j  , due to the force 

configuration, is zero. 
Checking the first two conditions is trivial. The third condition can also be easily 

checked by means of the virtual work principle with applying a virtual unit moment 
pair at points 1j   and 2j  .  
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1 1

1/ 2 1/ 2  
Figure 1: A beam structure with load configuration that causes virtual stresses and strains around one 

particular element only. 
 
The second load configuration can be chosen as any configuration that obeys the 

boundary conditions, like for example the configuration of Figure 2. 
1 1

 
Figure 2: A beam structure with possible second load configuration. 

 

Following Eq. (2), with applying load configuration 1f  as shown in Figure 1 and 
applying load configuration 2f  as shown in Figure 2, one has that 
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It follows from (3) that 
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It should be noted that for isostatic beams, as an alternative to the load 
configuration 1f  of Figure 1, the force configuration of Figure 2 can be applied. The 
proof is trivial since for isostatic structures, it is not necessary that the relative rotation 
between points j  and 1j   be zero in order to have nonzero stress between theses 
points only. 

The displacement vector 1x  under the first load system 1f  can be obtained using 
the following equation 

1 1x Hf  (6) 

where H  is the flexibility matrix. The flexibility matrix can be derived from the 
relationship between stiffness matrix K and flexibility matrix as 
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Where Φ  is the matrix of mass-normalized mode shapes, ω  is the diagonal 
matrix of eigenfrequencies and N is the total number of modes. If only the first n  
modes are available, then the flexibility matrix is truncated. Note that the contribution 
of the modes in the flexibility is proportional to 2ωi

 , the influence of the higher modes 
is much smaller than the one of lower modes. As a results, the number of truncated 
modes needed to approximate a non-truncated flexibility matrix is much smaller than 
the ones needed to approximate a non-truncated stiffness matrix. This benefits the 
practical cases where only lower modes can be identified with good accuracy. 

Because the momental force is utilized in this paper, the mode shapes of 
corresponding rotary displacement needed to be measured in order to construct the 
flexibility matrix. This can be achieved by employing the macro-strain mode shapes 
proposed by Li & Wu (2007). By attaching a long-gauge FBG sensor onto the surface 
of a beam element between DOF j  and DOF 1j  , the macro-strain measured by an 
FBG sensor of gauge length l  can be expressed as 

1( )j j
h θ
l

     (8) 

where h  is the distance between the inertia axis of the  FBG sensor and inertia 
axis of the beam; j  is the rotary displacement at DOF j .  Therefore, the difference of 
the rotary displacement between any two DOFs can be obtained if the macro-strain 
between these two DOFs is measured. Similarly, the difference of the mode shape of 
rotary displacement can be obtained if the macro-strain mode shapes are identified 
from the measured macro-strain signals. The mode shape of rotary displacement can be 
finally obtained if enough boundary conditions of the rotary displacement or the lateral 
displacement are known. For instance, the rotary displacement of the fixed end is zero 
for a cantilever beam, hence the rotary-displacement mode shapes at every DOF can be 
calculated. Similarly, for a simple support beam, the relative lateral displacement of the 
two supports is zero if no settlement of these two supports is taken place. 

 
 

NUMERICAL STUDIES 
 

A numerical simply supported beam was constructed via ANSYS software to 
verify the proposed idea. The dimension of the beam is 0.03m×0.01m×1.5m, and the 
number of mesh is 6, 4 and 300 along these dimensions respectively. The element type 
is 3D elastic solid element with 8 nodes. The elastic modulus, the Poisson ratio and the 
density of the finite element model are 2.0×1011 N/m2, 0.33 and 7.8×103 kg/m3, 
respectively. It is assumed that 10 long-gauge FBG sensors were installed on the 
bottom of the beam to monitor the beam segments labeled as S1 to S10 as shown in 
Figure 3. Therefore, the longitudinal mode shape displacement of the ends of each 
sensor on the bottom of the beam is utilized to calculate the macro strain mode shapes. 

Four different damage cases were considered in this study as shown in Figure 3. 
Damage Case 1 is a symmetrical single location damage case where the width of the 
beam within S5 and S6 sensor range is reduced to 20mm. Damage Case 2 is an 
unsymmetrical single damage case where the width within S3 range is reduced to 
20mm.  Damage Case 3 is a multi-damage-locations case mixed by the first 2 damage 
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cases. Damage Case 4 is a continuous damage case where the width within S1 to S8 
range is reduced to 20mm.  
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Figure 3  A Simply supported beam model. 
 
The flexibility matrices of different cases were calculated utilizing the rotary mode 

shapes and the natural frequencies obtained from the numerical model. Practically, the 
number of qualified fundamental modes identified from measured vibration signals is 
limited. Therefore in this study, the numbers of the lowest fundamental modes n  
considered are 1, 2, 3, 5 and 10 in order to see the effects on damage detection results 
caused by truncation of modes when constructing the flexibility matrices. For each 
segment, the force configuration of Figure 2 was utilized as both the first load 
configuration 1f  and the second load configuration 2f . The flexural rigidity ratios 
( ) /EI EI EI  of different damage cases utilizing different number of modes as well 
as the real flexural rigidity ratios are illustrated in Figure 4.  

It can be seen from Figure 4 that, in general, the flexural rigidity ratios estimated 
utilizing the first few modes can not only locate the damage locations but also quantify 
the damage with acceptable accuracy. It is worth to be noted that even if only the first 
mode was utilized, the flexural rigidity ratios within the damage zones were estimated 
quite close to the real value. Furthermore, the methodology seems effective for either 
symmetrical/unsymmetrical damage or single/multiple/continuous damage cases. 

The natural frequencies and mode shapes identified from measured vibration 
signals may contain errors, and the flexibility matrix is constructed utilizing these 
modal parameters. Therefore, the estimated flexural rigidity ratio could be altered by 
these errors in the identified mode shapes. In this study, the noise effect of the modal 
parameters was investigated. Random noise with noise level 2%, 5% and 10% (in 
standard deviation) was added directly to the natural frequencies and macro-strain 
mode shapes both for intact and damaged cases. The first 3 lowest fundamental modes 
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were utilized to construct the flexibility matrix, i.e. n =3, which is practical for most of 
the real cases. The flexural rigidity ratio was estimated 1000 times for each noise level 
and then the mean and standard deviation of the estimated flexural rigidity ratio were 
calculated. Figures 5(a) to 5(c) illustrate the estimated flexural rigidity ratio of Damage 
Case 2 considering different noise levels. It can be observed that higher noise level 
induced higher estimation error both biased and in standard deviation. The error in 
modal parameters with noise level higher than 10% caused the damage localization and 
quantification not possible in Damage Case 2 where the real flexural rigidity ratio of S3 
equaled to 2/3. Similar phenomena were observed in other damage cases which are not 
shown in this paper. 
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Figure 4  Estimated flexural rigidity ratio utilizing different number of modes  for (a) Damage Case 1; 
(b) Damage Case 2; (c) Damage Case 3; (d) Damage Case 4. 

 
In addition, random noise with noise level 2% was added directly to the natural 

frequencies and lateral displacement mode shapes both for intact and damaged cases. 
The lateral displacement mode shapes were assumed measured at the 11 nodes as 
shown in Figure 3. Utilizing corresponding load configuration (-1/2 at j-1 node, 1 at j 
node and -1/2 at j+1 node) as both the first and second load configurations, the flexural 
rigidity ratio was estimated utilizing the first 3 lowest fundamental modes with 1000 
times. The mean and standard deviation of the estimated flexural rigidity ratio at the jth 
node were calculated and shown in Figure 5(d). It is obviously that the damage 
localization and quantification become not possible even with only 2% noise level in 
the lateral displacement mode shapes. Similar phenomena were observed in other 
damage cases which are not shown in this paper. Note that in real application, the noise 
level of macro-strain mode shapes and lateral displacement mode shapes depends on 
the measurement conditions. 
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Figure 5  Estimated flexural rigidity ratio of Damage Case 2 utilizing 3 modes  for noise level of modal 
parameters equals to (a) 2%; (b) 5%; (c) 10%; (d) 2% but utilizing lateral displacement mode shapes. 

 
 

CONCLUSIONS 
 
In this study, the idea to utilize macro-strain measurement via the local flexibility 

method to perform damage localization and quantification of a beam structure is 
proposed. Numerical studies considering practical issues including the limited number 
of structural modes and noise effect in the modal parameters were investigated. The 
results illustrate potential feasibility of the proposed idea and the potential advantage of 
utilizing macro-strain mode shapes over the lateral displacement mode shapes in noisy 
conditions. However, further experimental research is necessary to verify the 
applicability of the proposed approach to real structures. 

 
 

REFERENCES 
 
1. Abdo, M. A.-B. & Hori, M. (2002), A numerical study of structural damage detection using changes 

in the rotation of mode shapes, Journal of Sound Vibration, 251(2), 227–39.  
2. Bernal D., (2002) “Load Vectors for Damage Localization,” Journal of Engineering Mechanics, 

128(1), 7-14. 
3. Li, S. Z. & Wu, Z. S. (2007), Development of distributed long gage fiber optic sensing system for 

structural health monitoring, Structural Health Monitoring, 6(6), 133–43. 
4. Reynders E. & De Roeck G. (2010), A Local Flexibility Method for Vibration-based Damage 

Localization and Quantification. Journal of Sound and Vibration, 329(12), 2367-2383. 
5. Toksoy T. and Aktan A.E., (1994) “Bridge-condition assessment by modal flexibility, Experimental 

Mechanics, 34(3), 271–278. 

8




