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ABSTRACT 
 
In previous works, the authors showed advantages and drawbacks of the use of 

PCA and ICA by separately. In this paper, a comparison of results in the application 
of these methodologies is presented. Both of them exploit the advantage of using a 
piezoelectric active system in different phases. An initial baseline model for the 
undamaged structure is built applying each technique to the data collected by several 
experiments. The current structure (damaged or not) is subjected to the same 
experiments and the collected data are projected into the models. In order to determine 
whether damage exists or not in the structure, the projections into the first and second 
components using PCA and ICA are depicted graphically. A comparison between 
these plots is performed analyzing differences and similarities, advantages and 
drawbacks. To validate the approach, the methodology is applied in two sections of an 
aircraft wing skeleton powered with several PZTs transducers. 

 
 
INTRODUCTION 

 
Monitoring aircraft structures is a very important task, since knowing 

continuously the state of the structure provides safety in its normal service. This 
monitoring is usually performed by Non-Destructive Techniques (NDT), which 
involves analysis of the signals collected from the sensors attached to the structure 
being inspected.  The paradigm of damage detection (comparison between data 
from healthy structure and the current structure) can be tackled as a pattern 
recognition problem.  
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Due to the large quantity of experiments and signals that can be gathered from the 
structure under test, it is necessary to use multivariable techniques for data 
reduction and pattern recognition. Among others, statistical methodologies based 
either on Principal Component Analysis (PCA) or Independent Component 
Analysis (ICA) are very useful. While the goal in PCA is to find an orthogonal 
linear transformation that maximizes the variance of the variables, the goal of ICA 
is to find the linear transformation, which the basis vectors are statistically 
independent and non-Gaussian. Unlike PCA, the basis vectors in ICA are neither 
orthogonal nor ranked in order.  In previous works, authors [1, 2] showed the utility 
of using ICA and PCA for damage detection. These works use subspace projection 
techniques (either PCA or ICA) to build a baseline model (linear transformation to 
a new subspace basis vectors) using data from healthy structure. To detect 
damages, data from the current structure are projected onto the baseline models. By 
analyzing these projections, the presence of damages can be known.   
 
In this work, an analytical and experimental comparison between PCA and ICA by 
embedding both techniques in the same methodology is performed.  Two sections 
of an aircraft wing skeleton, which are powered with six piezoelectric transducers 
(PZT’s) are used to validate the comparison. To include damages in the specimen, 
three simulated damages were defined by means of adding a mass in different 
locations. In general terms, this paper includes a theoretical background of PCA 
and ICA, and the description of the methodology and experimental setup.  
Furthermore, results are presented and discussed. Finally, conclusions are drawn. 
 

 
THEORETICAL BACKGROUND 
 
Principal Component Analysis (PCA) 

 
Principal Component Analysis (PCA) is a technique of multivariable and 

megavariate analysis which may provide arguments for reducing a complex data set to 
a lower dimension and reveal some hidden and simplified structure/patterns that often 
underlie it [3]. The main goal of Principal Component Analysis is to obtain the most 
important characteristics from data.  In order to develop a PCA model, it is necessary 
to arrange the collected data in a matrix X.  This m  n matrix contains information 
from n sensors and m experimental trials [4]. Since physical variables and sensors 
have different magnitudes and scales, each data-point is scaled using the mean of all 
measurements of the sensor at the same time and the standard deviation of all 
measurements of the sensor.  Once the variables are normalized, the covariance matrix 
Cx is calculated.  It is a square symmetric m  m matrix that measures the degree of 
linear relationship within the data set between all possible pairs of variables (sensors).  
The subspaces in PCA are defined by the eigenvectors and eigenvalues of the 
covariance matrix as follows: 

Cx
P P  (1)

 
Where the eigenvectors of Cx are the columns of P, and the eigenvalues are the 

diagonal terms of Λ (the off-diagonal terms are zero). Columns of matrix P are sorted 
according to the eigenvalues by descending order and they are called as (by some 
authors) Principal Components of the data set or loading vectors. The eigenvectors 
with the highest eigenvalue represents the most important pattern in the data with the 
largest quantity of information. Choosing only a reduced number r < n of principal 
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components, those corresponding to the first eigenvalues, the reduced transformation 
matrix could be imagined as a model for the structure. In this way, the new matrix P 
( P sorted and reduced) can be called as PCA model.   Geometrically, the transformed 
data matrix T (score matrix) represents the projection of the original data over the 
direction of the principal components P:  

 
T = XP (2)

 
In the full dimension case (using P), this projection is invertible (since PPT  I ) 

and the original data can be recovered as X = T PT . In the reduced case (using P), with 
the given T, it is not possible to fully recover X, but T can be projected back onto the 
original m-dimensional space and obtain another data matrix as follows:    

 

X̂  TPT  XP PT  (3)

 
Therefore, the residual data matrix (the error for not using all the principal 

components) can be defined as the difference between the original data and the 
projected back. 

E  X  X̂

 X XPPT

 X I PPT 
 (4)

 
Independent Component Analysis (ICA) 
 
      ICA is a statistical technique very useful in systems involving multivariable data. 
The general idea is to change the space from an m-dimensional to an n-dimensional 
space such that the new space with the transformed variables (components) describes 
the essential structure of the data containing the more relevant information from the 
sensors.  Among its virtues is that ICA has a good performance in pattern recognition, 
noise reduction and data reduction. The goal of ICA is to find new components (new 
space) that are mutually independent in complete statistical sense. Once the data are 
projected into this new space, these new variables have no any physical sense and 
cannot be directly observed, for that, these new variables are known as latent 
variables. If r random variables are observed (x1, x2,…, xr), they can be modeled as 
linear combinations of n random variables (s1, s2,…, sn) as follows: 

 

niniii stststx  ...2211 . 
 

(5)

     Each tij in (5) is an unknown real coefficient. By definition, the set of sj  should be 
statistically mutually independent and can be designed as the Independent 
Components (ICs). In matrix terms, equation (5) can be written as 
 

x  Ts, 
 

(6)

where x = (x1, x2,…, xr)
T, s = (s1, s2,…, sn)

T and T is the r × n mixing matrix that 
contains all tij.  If each random variable xi consists of time-histories with m data points 
(m-dimensional), the ICA model still holds the same mixing matrix and it can be 
expressed as:  
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TS=X ,  
 

(7)

where X is the r × m matrix that contains the observations. Each row of X represents 
the time histories. S is the Independent Component matrix, where each column is the 
vector of latent variables of each original variable.  Since T and S are unknown, it is 
necessary to find these two elements considering that only the X matrix is known. The 
ICA algorithm finds the independent components by minimizing or maximizing some 
measure of independence [5].  To perform ICA, the first step includes the application 
of pre-whitening to the input data X. The main idea is to use a linear transformation to 
produce a new data matrix Z=VX whose elements are mutually uncorrelated and their 
variances equal unity. It means that the covariance matrix of Z is the identity matrix 
(E{ZZT}=I). A popular method to obtain the whitening matrix V is by means of 
Singular Value Decomposition (SVD), such as the one used in Principal Component 
Analysis (PCA) and it is given by: 
 

T-1P=V  , (8)

where the eigenvectors of the covariance matrix ZZT are the columns of P and the 
eigenvalues are the diagonal terms of   (the off-diagonal terms are zero).  The 
second step is to define a separating matrix W that transforms the matrix Z to the 
matrix S whose variables are non-Gaussian and statistically independent: 
 

ZW=S T
. 

 

(9)

     There are several approaches to reach this goal. Maximizing the non-gaussianity of 
WTZ give us the independent components. On the other hand, minimizing the mutual 
information between the columns of WTZ is to minimize the dependence between 
them. The non-gaussianity can be measured by different methods, kurtosis and 
negentropy being the most commonly used.  The first one is sensitive to outliers and 
the other is based on the information theory quantity of entropy. In this paper, a brief 
explanation about negentropy is included. If the reader is interested in to know other 
approaches, an excellent summary is presented by Hyvarinen et al. in [5]. The 
differential entropy of a continuous-valued random vector si with probability density 
function p(si) is interpreted as the degree of information that si gives and it is defined 
in the form: 
 

       iiii dsspspsH log .
 (10)

     A Gaussian variable has maximum entropy among all random variables with equal 
variance. In this way, a modified version of the entropy (called negentropy) can be 
used to measure the non-gaussianity of the variables.  Negentropy J(si) is defined as: 
 

  )()~( iii sHsHsJ  , (11)

where is~ is a Gaussian random variable with the same covariance matrix as si. 

Negentropy is always non-negative, and it is zero only if si has Gaussian distribution. 
 
Data projection into the model  
 

Data from the healthy structure are used to build the either PCA or ICA baseline 
model.    The transformation matrix for PCA, the P matrix (principal components or 
loading vectors) is calculated by means of Singular Value Decomposition algorithm. 
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On the other hand, the transformation matrix for ICA, the S matrix (independent 
components) is calculated by using the FastICA Matlab package developed by the 
University of Helsinki [7]. New data from the unknown structure state Xc is projected 
into the models. In the case of PCA, the score matrix T can be calculated by means of 
the equation (2).  In the case of ICA, the mixing matrix T can be calculated from 
equation (7). Since SST=I (because of the properties of S), this can be rewrote as 
follows:   

X cS
T = TSST

X cS
T = T

, 
(12)

 
 

DAMAGE DETECTION METHODOLOGY 
 

The damage detection methodology by using (either PCA or ICA) was previously 
proposed by the authors [2,6]. This includes the use of an active piezoelectric system 
in different phases, where each phase is defined by the excitation of a piezoelectric 
and obtaining the signals from the other sensors attached to the structure. Using data 
from healthy structure, the calculation of a (either PCA or ICA) baseline model for 
each phase is performed using the equations presented in the theoretical background. 
After building the baseline model for each actuator, signals from the current structure 
are projected into the model and two of these projections are plotted and analyzed to 
determine if exist a damage on the structure (see Figure 1). 

 

Figure 1. Damage detection methodology using (either PCA or ICA) and the PZT 1 as actuator. 
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EXPERIMENTAL SETUP 
 

This work involves experiments with an aircraft wing skeleton. In general, this 
structure is divided in small sections by using stringers and ribs. For testing the 
approaches, two sections of the wing structure were used (Figure 2a). These sections 
are powered by 6 PZT’s, two in upper section, two in lower section and two in the 
stringer. Four different states including the healthy structure are analyzed.  By adding 
a mass in different locations, three damages were simulated as shown in Figure 2b. 
 

 

  
a.  b.  

Figure 2. PZT’s location and damage description. 
 
 

RESULTS 
 

From Figure 3, it can be shown results obtained in phases 1, 3, 4 and 5.  At the 
right side results using PCA are graphically depicted, at the left side, results using 
ICA.  Each shape represents the state of the structure, in this way; undamaged 
structure is represented by the green plus sign, damage 1 by the magenta circles, 
damage 2 by the red diamonds, and damage 3 by the cyan asterisk. 

As can be observed in the plots, in both methodologies, damages are clearly 
distinguished from undamaged structure; additionally, some phases are more sensitive 
than others in both methods. Other important characteristic is related with the 
possibility to distinguish between damages. Although, there is one damage in the 
stringer which is detected by the sensors attached in the same stringer, this is also 
detected by using both methodologies for other phases as in the phase 1, this means 
that the combined analysis of the sensors (using all phases) is a very useful tool 
because allows to consider the dynamic responses in the whole sensor network. 
Although there are differences in the scale of the graphs of ICA and PCA, it is 
possible to see that into the PCA plots there is a clearer separation between each data 
set when only two projections are used.  This is because with PCA it is possible to 
ensure that these components contain the most relevant information with maximal 
variance, while with ICA is not possible to define which components are more 
relevant directly from the algorithm. 
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Figure 3. Damage detection plots using phases 1, 3, 4 and 5. 
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CONCLUSIONS 

 
In this work a comparison between the results obtained for two methodologies in 

damage detection (PCA and ICA) using data driven from a Piezoelectric active 
system, were shown. Both methodologies allowed detecting the damages showing in 
most cases a clear distinction between the data from undamaged structure and the 
other three damage states. The results can change depending of the phase to being 
analyzed but in all cases it is possible to distinguish the presence of damage. In 
addition, it was shown some differences between the results using both 
methodologies, for instance the definition of the number of Components or the 
possibility of define different data set by identifying the kind of damage due to the 
separation that is possible to see in some of the phases. 

An important difference between PCA and ICA  is related to the number of 
components used in each methodology, in the PCA case this number can be 
determined by the variance criteria, but in the ICA case don’t exist a criteria for 
determining how many components represent the dynamic of the data, despite this, 
was showed that with just two components is possible to define the presence of 
damages, of course is necessary to evaluate all the combinations to determine which 
components show better results. One way to improve the results with ICA could be 
using another tool that includes all the Independent Components by each phase or 
performing data fusion including the components from all phases.  
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