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ABSTRACT 
 

The interest in the propagation of ultrasound waves in pipe-like solid waveguides 
arises out of several areas of the structural health monitoring (SHM) community for 
the detection, localization and assessment of defects as well as the prediction of 
remaining life in civil, mechanical, aeronautic and aerospace structures. SHM premise 
offers a continuous observation of the structural integrity of operational systems. This 
is particularly convenient, therefore, for the reduction of time and cost for 
maintenance without decreasing the level of safety. Some practical applications are 
the monitoring of pipework in gas and oil industries, suspension bridge cables, nuclear 
fuel cladding tubes, etc.  

This paper describes an approach for SHM using guided waves in pipe-like 
structures in terms of a pattern recognition problem. The formalism is based on a 
distributed piezoelectric sensor network for the detection of structural dynamic 
responses. Several methods for signal filtration, feature selection and extraction, and 
data compression of the recorded time histories are discussed and evaluated. Principal 
Component Analysis (PCA), Non-Linear PCA (NLPCA) and Wavelet Transform are 
among them. Additionally, the different clusters, corresponding to each damage level 
are visualized with the help of Self Organizing Maps (SOM). Tests were performed 
on a piping system where the properties of the proposed methods are compared and 
appraised with experimental pitch-catch signals between the pristine and the damaged 
structure. 
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INTRODUCTION 
 

Cylindrical Structures can be found in a variety of technical applications. Piping 
systems, composed of interconnected hollow cylindrical structures, can be found on 
ground, maritime, and aerial structures. For economic and safety reasons, their 
structural integrity has to be secured in order to prevent high class damages. 
Continuous observation is therefore desirable but in many cases hard to achieve [1]. 
Ways of reliable and appropriate inspection have been a field of research for long 
time. At the beginning, vibration-based techniques were developed for global 
monitoring [2]. On a more local level, conventional non-destructive testing (NDT) 
methods based on ultrasonic waves have been applied by well-trained craftsman. Due 
to possible inaccessibility as well as due to the high costs, still a vast quantity of 
critical cylindrical structures is monitored only within long intervals or not at all. As a 
consequence, wave-based techniques rapidly evolved due to their well-known 
properties and were adapted to the concept of SHM. These techniques enable the 
recording of baseline measurements in order to relate changes in the signals to 
structural damage and allow the monitoring of complex structures [3]. Recent years 
have shown new developments  in ultrasonic generation techniques and sensors [4-5]. 
Ultrasonics have been successfully applied to analyze the interaction of guided waves 
with discontinuities in pipes [6]. Concerning passive techniques, Acoustic Emission 
has been used as a method of leakage detection [7]. From the various types of sensors 
used, piezoelectric sensors and fibre optics have shown to be most suitable for 
structural integration. With reference to the efficient use of data, data compression, 
feature extraction and feature selection from dynamic measurements, several methods 
have been established in the field of condition monitoring and SHM. Using time series 
as basis, a series of suitable steps for achieving PCA for evaluation are explained in 
[8]. Advanced techniques of data compression and evaluation can be found in [9], 
explaining the analysis with the help of nonlinear components using a multilayered 
perceptron architecture with an auto-associative topology as well as with discrete 
wavelet transformation. This paper presents a study of intelligent signal processing 
techniques for the purpose of structural damage detection and classification on the 
basis of a pattern recognition procedure. A brief theoretical background of wave 
propagation in hollow cylinders and the feature extraction methods used here are 
presented for completeness. At the end, several linear and nonlinear methodologies for 
data mining are applied and evaluated for experimentally gained data, and their 
advantages and disadvantages are discussed for their application into SHM systems. 
 
 
THEORETICAL FOUNDATION 

 
Waves in Hollow Cylinders 

 
Guided waves in hollow cylinders were first studied by Gazis [10].  It is known 

that the solutions of the equations of motion for hollow cylinders lead to three 
different classes of propagating modes (see Rose [11]). These tube modes are 
designated as longitudinal, torsional and flexural modes. Three fundamental modes 
are depicted in Figure 1 for a frequency of 180 kHz, an outer radius of 20mm and 
2mm thickness.    

2



 
 

Figure 1. Comparison of the different mode shapes for hollow cylinder made of stainless steel: (a) 
Longitudinal L(0,1), (b) Torsional T(0,1) and (c) Flexural F(0,1) at 180kHz. 
 

Dispersion curves were calculated using a general-purpose computer program 
developed by the authors [12] and depicted in Figure 2.  Just the fundamental modes 
are labeled.  
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Figure 2. Group Velocity at a given frequency band for different modes. 
 

From Figure 2 can be observed that the wave propagation phenomenon is much 
more complicated than that of a plate. This is given by the fact that many more modes 
exist in a pipe than in a plate of similar thickness and this effect makes the 
interpretation of the signals difficult. There are a total of 40 modes in the frequency 
range up to 300 kHz.  The vertical dashed lines enclose the frequency band where 
good signal to noise ratio was obtained for the experiments conducted in this study. 

 
Feature Extraction and Damage Indicators Methods 
 

Several ways for feature extraction and calculation of damage indicators are 
evaluated in this study. In the time domain field, the application of PCA on unfolded 
time histories from dynamic responses collected at different sensor positions can be 
used to extract features relating the linear correlations between these responses. 
According to Mujica [8], the use of a limited number of principal components is 
sufficient to evolve data analysis. PCA is a classical method of multivariate statistics 
and its theory and use are documented in many textbooks [13]. If nonlinear 
correlations between variables exist, non-linear mapping methods could describe the 
data with higher precision and/or by fewer components than PCA. In the present 
study, a multilayer perceptron network with auto associative topology is implemented 
for non-linear mapping purposes [14]. Time-frequency analysis can also be used to 
study the time variations of the dynamic responses in spectral characteristics. One 

(a) (b) (c) 
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possible approach is the use of wavelet transformation. There exists a vast amount of 
literature related to wavelet applications for damage identification. The discrete 
wavelet transform (DWT) on the basis of the two-channel subband coding scheme as 
proposed by Mallat [15] was applied to the recorded dynamic responses. Each wavelet 
coefficient represents time and frequency information of the regarded signal. The 
optimum number of level decompositions was determined based on a minimum-
entropy decomposition algorithm. Daubechies wavelets were chosen for this study. 
Moreover, the calculated coefficients can be used for further processing with the afore 
mentioned mapping methods. These methods are mainly used for the distinction of 
damaged and pristine state, helping to execute novelty detection. To visualize the 
results of the process of data analysis it is possible to calculate a damage indicator e.g. 
using T² or Q statistics and Outlier Detection. Also presented here is the visualization 
with the help of self-organizing maps [16]. They compress high dimensional data on a 
low dimensional display. Either data of the pristine structure are chosen for training 
and distance to the map exhibits the damage indicator or all data are taken to process 
the map. In this case the distance between the different parts of the map shown in the 
U-matrix, which evaluates the space between neighboring nodes of the map, can be 
used as indicator of separation between different groups. Further details can be found 
in [17].  

 
 

PRACTICAL IMPLEMENTATION 
 

Experiments were carried out to investigate the practical performance of the 
techniques discussed in the previous section. Figure 3 depicts the experimental setup 
used for testing. The pipe work was made of steel and the piece which should be 
monitored is fixed stationary at both ends with four screws. It has a diameter of 40 
mm with a wall thickness of 2 mm and a length of 850 mm. On both sides of the pipe 
behind the flanges, four piezoelectric elements are mounted equally distributed around 
circumference and rotated 45° compared to the screws in the flanges.  

 

 
 

Figure 3. Experimental Setup. 
 

Damage was introduced into the structure in several steps. It was executed as a cut 
with an angular grinder. The depth and its vertical extension are enlarged in four steps, 
starting with a cut of 0.75mm depth. This cut is increased in depth in a second step 
until the wall is almost penetrated, followed by an increase in vertical direction. 

Piezoelectric 
Elements

Monitored 
Pipe 
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Finally the pipe’s wall is penetrated, increasing depth in the middle of the former 
notch.  

 

 
 

Figure 4. Different damage steps: Damage 1 - Damage 4 and its cross sections. 
  
The different states can be found in Figure 4. The transducers were excited by a 

Hann-windowed toneburst voltage signal with a carrier frequency of 180 kHz and 5 
cycles in order to construct the data base for the pristine as well as all the damaged 
cases. The signal is penetrating through both flanges and the pipe and recorded by the 
sensors at the other side of the pipe. 

 
 

EXPERIMENTAL RESULTS 
 

Examination of the results in time domain shows the high similarity of the signals 
taken at different levels of damage indication.  

 

 
 

Figure 5. Recorded Data of two different paths for undamaged and damaged states in time domain. 
 

Figure 5 shows the data in time domain recorded from two sensor-actuator 
combinations with similar paths. The difference between these is larger than the 
differences between damaged and pristine state. For the analysis of the data the path 
from actuator 1 to sensor 5 was chosen, when only taking into account one path and 
unfolding the data of the paths to all sensors otherwise. The processing of the data 
with the help of mathematical tools reveals more information than pure time data 
does. The analysis as described in the theoretical part with the help of linear PCA 
shows, that damage can be separated from pristine state only using the first three 
components of the PCA. On a 3D-plot almost all groups can be distinguished (Figure 
6 a – next page).  

Damage 1 Damage 2 Damage 3 Damage 4 
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(a)  (b)  
Figure 6. (a) First three PCs from linear PCA of all damage types and the pristine structure (b) 
Damage indicator calculated by outlier analysis using the first three components of PCA.  
 

Nevertheless data gained form a relatively small damage reveals bigger distance to 
the data of the pristine structure than other data of the damaged structure does and the 
direction of distance is not the same for different damage sizes. This distance can also 
be used as basis for multivariate outlier analysis [18] making the distinction between 
damaged and undamaged state possible. However, the different damages 3 and 4 
cannot be clearly separated, even when taking more PCs into account (Figure 6 b). 
 

(a) (b) (c) 
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Figure 7. SOMs (first row) and U-Matrices (second row) for unfolded Data (Actuator 1):  (a) 17 PCs 
using PCA, (b) 11 PCs using DWT and (c) 4 PCs using NLPCA. 
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When using Self Organizing Maps for the visualization of the PCs employing 
more components, the different damage sizes can be distinguished, but the U-matrix 
as an indicator of the separation does not show significant borders between the 
groups. Using the unfolding of the data, this can only be changed partly (see Figure 
7a). Using the method of DWT for the unfolded data does not lead to better results 
when using SOMs for the visualization. The advantage is that lower levels are given 
by a smaller number of wavelet coefficients. Damage detection is still possible 
separating the pristine from the damaged structure but the U-matrix shows a smaller 
separation between data of pristine and damaged structure for Damage 3 and 4, while 
the separation to damage 1 and 2 can be seen easily (see Figure 7 b). The utilization of 
Multilayer Perceptrons creating nonlinear components reveals a strong separation of 
the undamaged state from all damaged states. Nevertheless the different damage types 
can be separated showing the great advantage of the method chosen when 
highlighting that only 4 components were used to calculate the SOM (Figure 7 c). Still 
the differentiation between the last two damage types is only slightly shadowed, 
which leads to the assumption that these two do not differ in many ways.                                    

 
 

CONCLUSION 
 

The monitoring of hollow cylinders as an important task to increase security of 
piping systems is depending to a high rate on the modes activated in the monitoring 
process. Within this publication, an active damage detection method using 
piezoelectric elements is presented. Several methods for data evaluation are compared 
and evaluated using the time domain data collected from experiments. It can be seen 
that every method is able to distinguish between damage and undamaged state. The 
main difference resides in the computational cost and number of components that are 
required to reliably detect and/or classify damages. Nevertheless, this computational 
cost is just present during the construction of the model using the baseline data for the 
non-linear methods. The separation between the different damage types can be 
executed with the help of multivariate outlier analysis and PCA or SOMs and higher 
level processed data, with the limitation of not being able to distinguish damage 3 and 
damage 4 clearly. This results from the fact that the difference in damage severity is 
very small. It is also possible that the modes that were excited in the structure could 
not be able to interact with this slight change in damage depth. This is supported by 
the fact of the changing ratio of displacement and stress amplitudes along the wall 
thickness. During the experiments a shift of data could be seen, which was not desired 
and therefore the offset was subtracted. Further investigations might help to find the 
reason of these trends, changing from measurement to measurement. Moreover, the 
time data already shows a relation to the environmental conditions in the laboratory. 
To be able to use one of the methods mentioned above reliably, either a stable 
environment has to be secured or a way around this, including e.g. a temperature 
influence model needs to be developed. 
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