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ABSTRACT 
 
In this work Robust Fuzzy Principal Component Analysis (RFPCA) is used and 

compared with comparing with classical Principal Component Analysis (PCA) to 
detect and classify damages. It has been proved that the RFPCA method achieves 
better result mainly because it is more compressible than classical PCA and also 
carries more information, hence not only it can distinguish the healthy structure from 
the damaged structure much sharper than the traditional counterparts but also in some 
cases traditional PCA is incapable of discerning the pristine from damaged structure. 
This work involves experimental results using pipe-like structure powered by a 
piezoelectric actuators and sensors. 

 
INTRODUCTION 

 
Structural health monitoring (SHM) has gained a significant amount of attention 

in the research and industrial communities over the last two decades. The concept of 
actively monitoring structures for damage is of interest because it presents the ability 
to detect and locate damage in a structure before it can propagate and cause serious 
failure. Damage can be defined as changes introduced into a system that adversely 
affects its current or future performance [1]. The ability to know when and where 
damage has occurred in a structure can reduce the costs associated with scheduled 
inspections and the repair of failed structures, and also improve the overall safety of 
the structure. SHM can be applied to many sectors of infrastructure including civil, 
mechanical, and aerospace systems. 
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Several damage detection methods have been developed and used in this field. 
Among them, feature discrimination using Principal Component Analysis (PCA), has 
received a significant consideration due to unique features that this method offers [2, 
3, 4]. PCA is a popular statistical method which tries to explain the covariance 
structure of data by means of a small number of components. These small quantity of 
components are calculated based on maximizing variance and decomposing 
covariance. Usually, two or three PCs provide a good summery of all the original 
variables. Indeed, PCA follows two most significant goals; Firstly, it reduces the 
dimension of data. Secondly, it can also reveal those underlying factors or 
combinations of the original variables that principally determine the structure of the 
data distribution [5]. 

Despite the interesting characteristic that PCA carries, it is suffering from some 
flaws such as sensitivity to outliers, missing data and poor linear correlation between 
variables due to poorly distributed variables [6]. Therefore, data reduction, modeling, 
and any other method based on classical PCA become unreliable if the mentioned 
drawbacks are not considered [7]. 

 To overcome these limitations, some methods have been proposed such as the 
method which is based on the eigenvectors of robust covariance matrix [8] and the 
method which is based on projection pursuit (PP) [9, 10] and also the method based 
on both approach which attempts to combine the advantages of both methods [11]. 

The superiority of mentioned methods over classical PCA in SHM for 
distinguishing damages has been considered before by the authors of this paper [12]. 

Another most illuminating approach is to use robust fuzzy principal component 
analysis (RFPCA).It has been proved that RFPCA method achieves better result 
mainly because it is more compressible than classical PCA, i.e. the first fuzzy 
principal components accounts for significantly more of the variance than their 
classical counterparts. Therefore, by carrying more information in primary PCs, it can 
provide more information for any damage detection approach based on it and as a 
result, distinguishing much better between the healthy and damaged structures [6]. 

To support the claims mentioned above, this work involves an experimental 
benchmark with pipe-like structure equipped with piezoelectric transducers as 
actuators and sensors. Damages have been simulated by saw cuts in different severity. 
Then, the ability of separating non-damaged structure from damages with different 
severity has been compared between classical PCA and RFPCA and it has been 
shown that RFPCA is more efficient to distinguish between undamaged, real 
damages. 

The remaining parts of this paper are organized as follows. First, a theoretical 
consideration on traditional and robust fuzzy PCA is explained. After that, 
experimental setup is described. Furthermore, results and discussion are presented and 
discussed. Finally, conclusions are drawn. 

 
THEORITICAL CONSIDERATION 

Traditional PCA  
 
Principal Component Analysis (PCA) is an important and essential technique for 

data reduction, image compression and feature extraction [13]. PCA is a tradeoff 
between clarity of representation and ease of understanding. The main motivation of 
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PCA is to project the data from a high dimensional space onto a lower dimensional 
space and reveal the part of information that is not easy distinguished in original data. 
To do this PCA transforms the original variable into new, uncorrelated variables 
called principal components (PC) which are linear combinations of the original 
variables and generally demonstrate the data more feasible in much less dimension. 
However, it is well-known that PCA, as with any other multivariate statistical method 
is sensitive to outliers, missing data and poor linear correlation between variables [14]. 
The reader is referred to [15, 16] for more information. 

Robust Fuzzy Principal Component Analysis  
 
To alleviate the drawbacks of traditional PCA, different methods have been 

suggested [17, 5, 6, 11]. The ability of them to provide more feasible results in SHM 
has been considered elsewhere [12, 7]. The Robust Fuzzy Principal Component 
analysis learning rule that is used in this work is described in [13] and it is based on 
the approach proposed in [18]. 

Considering a data set with ݊ observations like ܺ ൌ ሼݔଵ, … ,  ௡ሽ the optimizationݔ
function ܧ subject to ݑ௜ א ሼ0,1ሽ is defined by: 

ሻݓ,ሺܷܧ ൌ ∑ ௜ሻݔ௜݁ሺݑ ൅ ߟ ∑ ሺ1 െ .௜ሻݑ
௡
௜ୀଵ

௡
௜ୀଵ                                    (1) 

The goal is to minimize ܧ with respect to U and ݓ, where ܷ ൌ ሼݑ௜, ݅ ൌ 1,… , ݊ሽ 
is the membership sets and ߟ is the threshold. Since ݑ௜ is the binary variable and, w is 
the continuous variable, the optimization with gradient descent approach is hard to 
solve using gradient descent. Therefore, a new objective function is proposed by [13] 
as follows: 

ܧ ൌ ∑ ௜ሻݔ௜݉1݁ሺݑ ൅ ߟ ∑ ሺ1 െ ௜ሻ௠భ௡ݑ
௜ୀଵ

௡
௜ୀଵ                                   (2) 

Subject to ݑ௜ א ሾ0,1ሿ and ݉ଵ א ሾ1,∞ሻ. Now ݑ௜ being the membership of ݔ௜ 
belonging to data cluster and ሺ1 െ  ௜ belonging to noiseݔ ௜ሻ is the membership ofݑ
cluster. ݉ଵ is the so-called fuzziness variable. In this case, ݁ሺݔ௜ሻ  measures the error 
between ݔ௜ and the class center. This idea is similar to the C-means algorithm [19].  

Since now ݑ௜ is a continuous variable, the difficulty of mixture of discrete and 
continuous optimization can be avoided and a gradient descent approach can be used. 
Firstly, the gradient of equation (2) is computed respect to ݑ௜ and equaled to zero, 
therefore: 

௜ݑ ൌ
ଵ

ଵାሺ௘ሺ௫೔ሻ ఎሻ⁄ భ/ሺ݉1షభሻ
 .                                                      (3) 

By substituting this membership in equation (2) the following equation is obtained: 

ܧ ൌ ∑ ൬ ଵ

ଵାሺ௘ሺ௫೔ሻ ఎሻ⁄ భ/ሺ݉1షభሻ
൰
݉1ିଵ

௡
௜ୀଵ ݁ሺݔ௜ሻ                            (4) 

On the other hand, the gradient respect to ݓ is  

ܧ߲

ݓ߲
ൌ ሻሺ݅ݔሺߚ

߲݁ሺ݅ݔሻ

ݓ߲
ሻ ,                                                              (5) 

where,  

௜ሻݔሺߚ ൌ ൭
ଵ

ଵାሺ௘ሺ௫೔ሻ ఎሻ⁄
భ

݉1షభ
൱

݉1

,                                               (6) 
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and ݉ଵ is the fuzziness variable. If ݉ଵ ൌ 1, the fuzzy membership reduces to the hard 
membership and can be determined by following rule: 

௜ݑ ൌ ቄ1 ݂݅ሺ݁ሺݔ௜ሻሻ ൏ ߟ
0 ݁ݏ݅ݓݎ݄݁ݐ݋

ቅ                                                       (7) 

Now ߟ is a hard threshold in this situation. There is no general rule for the setting 
of ݉ଵ, but most papers set ݉ଵ ൌ 2. In [13], authors derived the following algorithm 
for the optimization procedure  

1. Initially set the iteration count ݐ ൌ 1, the iteration bound T, learning 
coefficient ߙ଴ א ሺ0,1ሿ, soft threshold ߟ to a small positive value and 
randomly initialize the weight ݓ. 

2. While ݐ is less than T, do steps 3–9. 

3. Compute ߙ௧ ൌ ଴ሺ1ߙ െ
௧

்
ሻ, set ݅ ൌ 1 and ߪ ൌ 0 

4. For the number of observations , do steps 5–8 
5. Compute y=ݔ்ݓ௜, ݑ ൌ ݒ and ݓݕ ൌ  ݑ்ݓ
6. Update the weight as : ݓ௡௘௪ ൌ ௢௟ௗݓ ൅ ௜ݔሺݕ௜ሻሾݔሺߚ௧ߙ െ ሿݑ ൅ ሺݕ െ  ௜ሿݔሻݒ
7. Update the temporary count ߜ ൌ ߜ ൅ ݁ଵሺݔ௜ሻ 
8. Add 1 to ݅. 
9. Compute ߟ ൌ ሺߜ/݊ሻ and add 1 to ݐ. 
 

The weight ݓ in the updating rules converges to the principal component vector 
almost surely [20, 21]. 

 
 

EXPERIMENTAL SETUP 
 
 
The RFPCA algorithm mentioned above is applied on a data set captured from 

pipe benchmark consist of damages (cuts) with different severities. Damage detection 
in pipe like structures has gotten strong consideration due to their importance in 
industry as many works have been done to detect flaws in pipes and tubes using 
guided waves [22, 23, 24].  

Figure 1 shows the mentioned testing powered by a data acquisition system, 
Handyscope® that allows generating and capturing signals using the mounted PZT 
actuator/sensors.  

 

(a) (b) 
Figure 1. Pipe-like benchmark a) structure and acquisition system b) mounted transducers. 
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Waves are generated by consecutive by actuating the 4 PZTs on the left side of the 
pipe using a 180 KHz tone burst signal with the amplitude of 10 volts and these are 
captured by each of the 4 PZTs on the right side. The PZTs are numbered in order of 
up, rear, down and front in both sides starting from actuators (i.e. PZT 1 correspond to 
left side and upper position and so on). Therefore, 16 routes exists each route 
connecting an actuator on the left side and a sensor on the right side. Each experiment 
is repeated 20 times for each route. To reduce noise, a mean signal is saved to obtain 
one observation. Finally, 30 observations are captured for each route in each state 
(different damages and pristine structure). Figure 2 shows a sample of the generated 
and received waves after a decimating by 10 and denoising procedure. 

 

(a) (b) 
Figure 2. Generated and received waves, a) tone burst actuating signal b) received signal. 

Damages are presented by adding measured cuts with different depths in order to 
simulate damages with different severities (0.75 mm crack depth, 2 mm crack depth 
and 16 mm width, 2 mm crack depth and 30 mm wide , complete hole) Figure 3 shows 
an example of mentioned damages. Damages are placed in a line between actuator 2 
and sensor 6.  

 

(a) (b) 

Figure 3. (a) and (b) two example of saw cuts in pipe structure with different severities. 

 
RESULTS AND DISCUSSION  

 
To build the baseline model of the healthy structure, traditional PCA and RFPCA 

are applied on the data matrix that contains dynamical responses of structure in form 
of  ࢔܆ൈ࢓, where n represents the number of observations, and ݉ the number of 
variables (samples). In a traditional approach [2], the projection matrix ۾ is calculated 
which consists of eigenvectors of the covariance matrix of baseline data. The columns 
of matrix P are sorted according to the eigenvalues by descending order, whereas the 
eigenvector with the highest eigenvalue represents the most important pattern in the 
data with the largest quantity of information. This matrix is used as a model to apply 
the testing data, which contain data from both: the damaged and pristine structure. 
Choosing only a reduced number r of principal components, those corresponding to 
the first eigenvalues, the reduced transformation matrix could be imagined as a model 
for the structure. Geometrically, the transformed data matrix ࢔܂ൈ࢘ (score matrix) is 
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the projection of the original data onto the direction of the principal components P as 
follows: 

XPT                                                                (7) 

The projection is a representation of data points in the principal component space. 
As PCA derives the best possible ݎ dimensional ሺݎ  ൏  ሻ representation of the݌ 
Euclidean distances among objects, new points can be used directly to show the 
similarity or difference between observations in a much lower dimension space. The 
same philosophy is applied to RFPCA, where iteration weight ݓ is considered as a 
transformation matrix as described in the algorithm.  For instance, Figure 4 shows the 
score depicted in the first-second and second-third PCs space both in PCA and 
RFPCA. 

 

(a) (b) 

 

(c) (d) 

Figure 4. Traditional PCA vs RFPCA a) scores on first and second PCs using PCA b) scores on first 
and second PCs using RFPCA c) second and third PCs using PCA d) second and third PCs using 
RFPCA. 

From figure 4 it can be seen, in this route (from actuator 1 to sensor 6) that 
classical PCA can distinguish between damaged and healthy but it is unable to 
distinguish all damages from each other (i.e. damage 3 and 4 have overlap), whereas 
RFPCA provides much better separation between all the patterns related to any state 
of structure. It should be mentioned that in some routes, classical PCA even is not able 
to separate the healthy and damaged structure with minimum damage severity state, 
while FPCA can achieve this goal in all routes as depicted in Figure 5. 
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(a) (b) 

Figure 5. Route 1-6 from actuator 1 to sensor 6 a) PCA cannot separate the pattern of damages from 
the healthy one b) complete separation is satisfied. 

The main reason for achieving better results by RFPCA is that it is more 
compressible than classical PCA, i.e. the primary principal components count for 
significantly more of the variance than their classical counterparts hence, they convey 
more information from the structure and as thereupon better result is achieved. 

 
CONCLUSION  

 
 
A Robust Fuzzy Principal Component Analysis (RFPCA) method has been 

applied in this work to detect and classify damages in a pipe-like structure. The 
efficiency of the new approach is proved by its ability to provide much sharper 
differentiation of the patterns rather than its classical counterpart. It has been proved 
that damage detection based on robust PCA is more reliable as in all cases sharp 
separation of patterns are achieved whereas the traditional one suffers to distinguish 
the pattern clearly. More work is expected to show the superiority of robust method 
when other algorithms for damage detection are applied based on principal component 
analysis.  

 

Acknowledgment  
 
This work has been supported by the “Ministerio de Economía y Competitividad” 

in Spain through the Coordinated Project DPI2011-28033-C03-01, and the 
“Formación de Personal Investigador” FPI doctoral scholarship.  The author would 
like to thank greatly the support from “Institut für Mechanik und Regelungstechnik , 
Universitat Siegen” and all of its members especially Dr.-Ing. Maksim Klinkov and 
Dr.-Ing. Peter Kraemer (for the test bed), Mr. Gerhard Dietrich (help with the 
experiment) and Msc. Ms. Inka Buethe and Msc. Mr. Miguel Angel Torres-Arredondo 
(for helping to collect the data).  

 
REFERENCES 

 
[1] Sohn, H., Farrar, C. R., Hemez, F. M., Czarnecki, J. J., Shunk, D. D., Stinemates, D. W. & Nadler, 
B. R. 2003 A Review of Structural Health Monitoring Literature: 1996–2001. Los Alamos National 
Laboratory Report, LA-13976-MS.  

-150 -100 -50 0 50 100
-20

-10

0

10

20

30

PC1

P
C
2

 

 

ND
D1
D2
D3
D4

-300 -200 -100 0 100 200 300 400
-250

-200

-150

-100

-50

0

50

100

150

200

PC1

P
C
2

 

 

ND
D1
D2
D3
D4

7



[2] L. E. Mujica, J. Rodellar, A. Fernandez, and A. Guemes, “Q-statistic and T2-statistic PCA-based 
measures for damage assessment in structures,” Structural Health Monitoring, Nov. 2010.  
[3] P. De Boe and J.-C. Golinval, “Principal Component Analysis of a Piezosensor Array for Damage 
Localization,” Structural Health Monitoring, vol. 2, no. 2, pp. 137–144, Jun. 2003.  
[4] Fan, Lili , C. U. of Hong Kong. Dept. of Building and Construction, Structural health monitoring 
based on principal components analysis implemented on a distributed and open system. City University 
of Hong Kong, 2006. 
[5] H. Pop, “Principal Components Analysis based on a fuzzy sets approach,” Mij, vol. 1, no. 2, p. 1, 
2001. 
[6] C. Sarbu, “Principal component analysis versus fuzzy principal component analysis:: A case study: 
the quality of danube water (1985-1996),” Talanta, vol. 65, pp. 1215–1220, 2005. 
[7] F. Gharibnezhad and L. M. Delgado, “Damage detection in the presence of outliers based on robust 
PCA,” in Proceedings of th 8th International Conference on Structural Dynamics, EURODYN 2011, 
Leuven: 2011, 2011. 
[8] C. Croux, P. Filzmoser, and M. Oliveira, “Algorithms for Projectionâ€“Pursuit robust principal 
component analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 87, no. 2, pp. 218–225, 
Jun. 2007.  
[9] C. Croux and a. Ruizgazen, “High breakdown estimators for principal components: the projection-
pursuit approach revisited,” Journal of Multivariate Analysis, vol. 95, no. 1, pp. 206–226, Jul. 2005.  
[10] M. Hubert, “A fast method for robust principal components with applications to chemometrics,” 
Chemometrics and Intelligent Laboratory Systems, vol. 60, no. 1-2, pp. 101–111, Jan. 2002.  
[11] M. Hubert, P. Rousseeuw, and K. V. Branden, “ROBPCA: a new approach to robust principal 
component analysis,” Technometrics, pp. 1–34, 2005.  
[12] F. Gharibnezhad, L. E. Mujica, and J. Rodellar, “Comparison of two robust PCA methods for 
damage detection in presence of outliers,” Journal of Physics: Conference Series, vol. 305, no. 1, p. 
12009, 2011. 
[13] T.-N. Yang and S.-D. Wang, “Robust algorithms for principal component analysis,” Pattern 
Recognition Letters, vol. 20, no. 9, pp. 927–933, Sep. 1999.  
[14] T. Cundari, C. Sârbu, and H. Pop, “Robust Fuzzy Principal Component Analysis (FPCA). A 
Comparative Study Concerning Interaction of Carbon-Hydrogen Bonds with Molybdenum-Oxo 
Bonds,” Journal of chemical information and computer sciences, vol. 42, no. 6, pp. 1363–1369, 2002.  
[15] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002, vol. 2. 
[16] J. Shlens, “A tutorial on principal component analysis,” Systems Neurobiology Laboratory, 
University of California at San Diego, 2005.  
[17] H. F. Pop and C. Sârbu, “A new fuzzy regression algorithm.” Analytical chemistry, vol. 68, no. 5, 
pp. 771–8, Mar. 1996.  
[18] L. Xu and A. Yuille, “Robust principal component analysis by self-organizing rules based on 
statistical physics approach,” Neural Networks, IEEE Transactions on DOI - 10.1109/72.363442, vol. 6, 
no. 1, pp. 131–143, 1995. 
[19] P. Luukka, “Classification based on fuzzy robust PCA algorithms and similarity classifier,” Expert 
Systems with Applications, vol. 36, no. 4, pp. 7463–7468, May 2009. 
[20] E. Oja, “A simplified neuron model as a principal component analyzer,” Journal of mathematical 
biology, vol. 15, no. 3, pp. 267–73, Jan. 1982.  
[21] E. Oja and J. Karhunen, “On stochastic approximation of the eigenvectors and eigenvalues of the 
expectation of a random matrix,” Journal of mathematical analysis and applications, vol. 106, no. 1, pp. 
69–84, 1985.  
[22] H. Shin, “Guided wave tuning principles for defect detection in tubing,” Journal of nondestructive 
evaluation, vol. 17, no. 1, pp. 27–36, 1998.  
[23] J. L. ROSE, D. JIAO, and J. J. SPANNER, “engUltrasonic guided wave NDE for piping,” 
engMaterials evaluation, vol. 54, no. 11, pp. 1310–1313.  
[24] J. L. Rose, J. J. Ditri, A. Pilarski, K. Rajana, and F. Carr, “A guided wave inspection technique for 
nuclear steam generator tubing,” NDT &amp; E International, vol. 27, no. 6, pp. 307–310, Dec. 1994.  
 

8




