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ABSTRACT

In this paper a damage detection application is presented. The method used is

called NullSpace and is based on Subspace Identification. If the traditional time

domain based damage detection methods are applied without taking into account

the condition that the structure is working, the results can be confusing. In this pa-

per, a soft-clustering method is used in order to be able to create different clusters.

These clusters will reflect the different Environmental and Operational Conditions

(EOC) as different learning states. In order to test these variations an offshore

wind turbine model has been used. Different wind speeds and nacelle orienta-

tions have been simulated using Bladed (Garrad Hassan). The results show that

the method used for different conditions is able to detect damage correctly, where

the traditional method fails.

INTRODUCTION

Structural Health Monitoring (SHM) aims to give, at every moment during the

life of a structure, a diagnosis of the "state" of the constituent materials, of the

different parts, and of the full assembly of these parts constituting the structure

as a whole [6]. The state of the structure must remain in the domain specified in

the design. Thanks to the time-dimension of monitoring, it is possible to consider

the full history database of the structure, and the changes in the structure can be

monitored.

Damages in structures have caused many disasters in the course of history as

can be seen in figure 1. These kind of disasters have attracted the attention of the

community related to construction techniques and maintenance of structures.
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(a) Tunnel Collapse (b) Turbine Collapse (c) Airplane crash

Figure 1: Structural Disasters

Among the different application fields of Structural Health Monitoring (SHM),

nowadays the wind turbine one can be stuck out. The current trend in this field

is to locate the wind power plants off shore, where costs, including maintenance

and operations, increase significantly compared to on shore ones. This fact has

increased the interest towards the implementation of different concepts of SHM

in these structures.

Although many damage detection techniques are successfully applied to scale

models or specimen tests in controlled laboratory environments, the performance

of these techniques in field is still questionable and needs to be validated [5].

One of the main obstacles for deploying a SHM system for in-service struc-

tures is the environmental and operational variation of structures. In fact, these

changes can often mask structural changes caused by damage. Often the so-

called damage-sensitive features employed in these damage detection techniques

are also sensitive to changes in environmental and operational conditions of the

structures.

In this paper an application of this problem is presented. It is based on Krae-

mers work [4]. A soft-clustering method is applied to separate different environ-

mental conditions into different clusters. This clustering method has been tested

with a damage detection method based on the work of Basseville et al [3], and it

is called NullSpace damage detection method.

The data to test the method has been extracted from a mono-pile off shore

wind turbine model [2] simulated in Bladed (Garrad Hassan). Different environ-

mental conditions have been simulated: wind speeds; and different operational

conditions: nacelle orientations. Some virtual accelerometers have been placed

on the tower of the turbine so as to be able to read the vibrations. The dam-

age has been simulated by decreasing the wall thickness of the tower in different

percentages.

First, the details of the solution are presented, followed by the turbine model

is presentation. Next, the obtained results are shown, comparing them to the

unclustered solution. Finally, the conclusions and future work are presented.

DAMAGE DETECTION METHOD AND CLUSTERING

NullSpace Damage Detection

The key idea of the method relies on the concepts of subspace identification

and null subspace. The response data collected from the monitored structure is

used to construct the Hankel matrices. If no structural damage occurs, the or-

thonormality assumption between the subspaces of the Hankel matrices corre-

sponding to different data sets remains approximately valid according to small

residues, if not, these residues go wrong, indicating damage. The concept of

subspace identification is based on the definition of the Hankel matrix:
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Hp,q =

⎡
⎢⎢⎢⎣

Λ1 Λ2 · · · Λq
Λ2 Λ3 · · · Λq+1

...
...

. . .
...

Λp+1 Λp+2 · · · Λp+q

⎤
⎥⎥⎥⎦ ; q ≥ p (1)

Here p,q are user-defined parameters and Λi represents the output covariance

matrix, which may be estimated from a set of N output data samples yk as:

Λi �
(

1

N − i−1

)N−i

∑
k=1

yk+iyt
k (2)

From the point of view of damage detection, we are not concerned in iden-

tifying the modal parameters of the structure. Instead, only relative changes of

characteristic features are necessary for structural damage assessment. For this

purpose, a method based on the null subspace concept of these Hankel matrices

is used. Performing the Singular-Value Decomposition on the Hankel matrix,

Hp,q =UHSHVt
H (3)

UH0 must be found, which is the one that makes the next property to be true:

Ut
H0Hp,q = 0 (4)

UH0 contains the maximum number of independent column vectors that span

the column null space of H. The size of this matrix is not fixed.

If the structure is undamaged, the multiplication between null-space (UH0)

and the new Hankel matrix should be equal or really close to zero, because both

should have similar null-spaces. If damage occurs, the product should be different

from zero. We will call this, residue matrix:

Ri, j =Ut
H0Hi, j (5)

Once the residue matrix is calculated, a vectorization operator is applied, that

rearranges the columns of the R matrix (whose size is m× n) into one vector of

length (m ·n)×1.

ζ = vec(Ri, j) (6)

The residual (ζ ) has the information about how our structure has changed.

This information needs to be quantified, so that the algorithm can deduce if the

structure is damaged or not. For that purpose, a Damage Indicator is calculated.

Using the different residuals (ζ ) of the undamaged structure, the covariance ma-

trix is constructed, in that way how the structure works in the undamaged state is

known.

Σ̂ =

(
1

n−1

)
∑
n

ζnζ t
n (7)

where n is the number of residuals that exist for the undamaged structure.

In the learning Phase the values of the Null space (UH0) are extracted and the

“Covariance Matrix” Σ̂ is estimated.

In the detection phase, using the same NullSpace calculated in the learning

phase, the residual vector for the structure will be calculated. Subsequently the

next formula will be applied in order to detect whether damage exists:

DI = ζ t
n+1Σ̂−1ζn+1 (8)
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Fuzzy C-Means Clustering

The Fuzzy C-means (FCM) technique was originally introduced by Jim Bezdek

[1] as an improvement on earlier clustering methods. It provides a method that

shows how to group data points that populate some multidimensional space into

a specific number of different clusters. FCM clustering algorithm is based on the

minimization of an objective function called C-means functional. It is defined as:

J(X ;U,V ) =
N

∑
i=1

C

∑
j=1

(μi j)
m||xi − c j||2 (9)

where m is any real number greater than 1, ui j is the degree of membership

of xi in the cluster j, xi is the ith of d-dimensional measured data, c j is the d-

dimension center of the cluster, and || ∗ || is any norm expressing the similarity

between any measured data and the center.

Fuzzy partitioning is carried out through an iterative optimization of the ob-

jective function shown above, with the update of membership μi j and the cluster

centers c j by:

μi j =
1

C
∑

k=1

( ||xi−c j ||
||xi−ck||

) 2
m−1

; c j =

N
∑

i=1
μm

i j xi

N
∑

i=1
μm

i j

(10)

This iteration will stop when maxi j

{
||u(k+1)

i j −uk
i j||

}
< ε , where ε is a termi-

nation criterion between 0 and 1, whereas k are the iteration steps. This procedure

converges to a local minimum or a saddle point of Jm.

Clustered NullSpace Damage Detection Method

As most damage detection methods, there are 2 phases: the learning one, and

the detecting one. The learning process modelices how the structure behaves for

different environmental conditions. The inputs to the algorithm will be the in-

formation from the structure, and the environmental conditions, while the output

will be a Damage Indicator. The clustering information created in the learning

phase will be used in the detection phase, as well as the information about the

healthy structure.

Learning Phase

Figure 2: Learning phase 1

In this phase, the incoming data will be undamaged, and it is divided into two

subphases (Figures 2 and 3). The first step, is to perform a NullSpace damage
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detection method without the Environmental information, so as to make the clas-

sification. First of all, the Hankel matrices are estimated using the equations 1

and 2. The first Hankel matrix, the one corresponding to the first data set, will

be used to calculate the NullSpace see equation 4, and after this, the residuals of

the rest are calculated (eq. 6). With these residuals, the covariance matrix will be

estimated(eq. 7), and also the Damage Indicator (eq. 8).

Using these damage indicators and the EOC data, the fuzzy clustering is per-

formed, and the centers will be calculated.

In the second phase of the learning process the centers (CX ) calculated in the

first learning process, the Hankel matrices used in the first phase (HX ) and the

Hankel matrices from the centers (H0CX ) are used as inputs, along with the envi-

ronmental conditions (EOCX ). The basic idea is to use the fuzzy clustering cen-

ters to estimate how the healthy structure should work in different environmental

conditions. The goal of this second phase is to estimate a covariance matrix ∑̂ for

each cluster.

For each environmental condition, its healthy condition is estimated just by

applying the distance to the centers. A Hankel matrix is created that is propor-

tional to the distance to the different centers. That way, a NullSpace for each

different environmental condition is calculated. The reference hankel matrix is

estimated the next way:

HsX =
K

∑
k=1

ui jH0Ck (11)

being ui j the distance between the center k and the EOC X of the current data;

K the number of centers; and H0Ckthe Hankel matrix of the center k.

Once the Healthy Hankel matrix is estimated, its NullSpace (Uh0) is calcu-

lated. There will be a NullSpace for each data set. Next, the residual for the data

set is extracted, using the Hankel matrices coming from the data set correspond-

ing to the EOC used for estimating the Healthy Hankel matrix,

RX =Ut
h0X HX (12)

The vectorization is applied to the Residual Matrix (eq.6) . All the residuals

will construct the Covariance matrices Σ̂. There is a covariance matrix per cluster

center. The outputs from the learning phase one, will be the centers needed and

the Hankel matrices for the centers. From learning phase 2, the covariance ma-

trices are the output. All these variables are going to be needed in the detection

phase.

Figure 3: Learning phase 2
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Detection Phase

The detection phase is shown in Figure 4. In this phase, the classification

decision is made: it is decided if a data set belongs to the healthy structure or not.

The detection phase is very similar to the second phase of learning, but with the

difference that instead of estimating the covariance matrix, using the covariances

from the learning phase, the Damage Indicator (DI) is calculated.

The first part of the detecting phase is the same that has been done in the

second phase of learning. The estimation of the healthy Hankel matrix is done

in this first part, to know how the healthy structure should work for those EOC.

With this Hankel matrix, the NullSpace (Uh0) is found, just as done in the learning

phase. The input signal is transformed into Hankel matrices. With these Hankel

matrices, and using the estimated NullSpace, the residual matrix is found using

the equation 12 and the residual using the vectorization shown in equation 6.

Figure 4: Detection phase

Finally, for the Damage Indicator, the covariance ∑̂ calculated in the second

phase of the learning process is used. There are more than one covariance matri-

ces, one for each center. The one that belongs to the closest center is applied. The

Damage Indicator is found the next way:

DI = ζ t
n+1Σ̂−1

CX ζn+1

TURBINE MODEL

The method explained in the previous section, has been tested in a modeled

wind turbine. This wind turbine is based on the UPWIND project [2], and it is im-

plemented for the software Bladed (Garred Hassan). The tower properties of the

monopile version for the NREL 5-MW baseline wind turbine are the next ones:

the base diameter (6m) and thickness (0.027m), top diameter (3.87m) and thick-

ness (0.019m). The height above ground is 107.6m, 20m of those are flooded;

finally the total mass is 697.46Kg.

Simulation Parameters and Data

In the software different EOC are simulated using different winds and nacelle

orientations.

The winds used, are Turbulent winds with different means. In this case, the
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winds are centered in 5m/s,13m/s,19m/s,25m/s speeds, while the Nacelle ori-

entation changes between 0o,15o,30o and 45o from north.

To simulate the damage, the wall thickness has been reduced. The tower is

divided into different tower stations. The wall thickness of one of those stations

has been reduced in different percentages 1%5%10%20%and 30%.

Simulated vibration data from the structure is extracted from different tower

stations. In each station a simulated biaxial sensor (X,Y) is placed. Four locations

have been used, located in17.71m, 41m, 64.3m and 87.6m.

RESULTS

The figure 5 shows the Damage Indicators of the NullSpace Algorithm with-

out any type of clustering. Different colors show different cases. The green data

sets are the ones used for the learning phase, the blue are the healthy ones not

used for learning. The next four colors are the ones corresponding to each dam-

age (red 1% reduction, cyan 5%, fuchsia 10%, yellow 20% and black 30%). The

black line corresponds to the mean value of each case.

Figure 5: Results with Unclustered NullSpace

The first thing to see is that the variations concerning the EOC are larger than

the ones corresponding to the damage itself. The data sets with the same EOC

have nearly the same DI value (note that the scale is logaritmic). This results in

a really close value of the mean value for each case, and being impossible to be

able to detect damage properly.

Figure 6: Clustered NullSpace results

In the figure 6 the results of the clustered NullSpace method are showed. The

color classification is the same as in figure 5. It is clear that the damage is well

detected. The gap between damaged and undamaged is big.
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Among the undamaged data sets, the green ones have a really close value to

the blue ones. The damaged cases show similar responses, but the values for

higher amount of damage are bigger in general and the mean value corroborates

that fact.

CONCLUSIONS AND FUTURE WORK

The application to a wind turbine model of the clustered NullSpace damage

detection method has been able to correctly detect damage in the structure in

different environmental conditions. We also see that the mean value of the metric

indicating failure has higher values in the cases where the damage is more severe.

In the results we can see that if a unclustered solution is used, the results

obtained are not logical, and that too many false alarms are created. On the other

hand, a good application of a clustered version of the same method shows how the

method is able to detect damage. Although it is not easy to cuantify the damage

because the dispersion of the damage indicators is big. The NullSpace method

needs long datasets in order to have a stable damage indicator. This tells us that

the simulations should have been longer.

The tower used was a monopile offshore model; nowadays the mayor wind

turbine enterprises are modeling jacket based offshore wind turbines. It would be

interesting to see how the damage detection method works in this case. The next

step would be to try it with a jacket based offshore model.

On the other hand, it would be interesting to do a feature selection to the raw

data in order to select the most sensitive data for the damage detection.

Finally, as a conclusion, we have implemented a damage detection method

valid for the severe climate in the offshore demanding conditions, where mainte-

nance costs are high.
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